STATISTICAL MECHANICS AND FIELD THEORY

RECEIVED LAWRENCE
berkeley laboratory
Јロ 21979

LIBRARY AND
DOCUMENTS SECTION

Stuart Alan Samuel
(Ph. D. thesis)

May 1979

Prepared for the U. S. Department of Energy under Contract W-7405-ENG-48

TWO-WEEK LOAN COPY

This is a Líbrary Círculatíng Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Dívision, Ext. 6782

ABSTRACT

This thesis exploits the interplay of statistical mechanics and field theory. Generally speaking, field theories are abstract mathematical objects in which powerful mathematical methods have been developed. Field theories are useful for doing calculations but the essentrial physics is usually hidden and obscure. To unravel the important underlying ideas is difficult. Statistical mechanics, on the other hand, deals with physical systems, the physics of which is known via experiment and intuition. Statistical systems are concrete objects in which the essential underlying physical ideas are known. The roles of field theory and statistical mechanics are therefore complementary, one is powerful mathematically, the other provides physical insight. When a field theory is equivalent to a statistical mechanics system (or vice versa), one has the best of both possible worlds: one knowns the physics and one has the mathematical tools to calculate. This thesis establishes and exploits the connection between field theory and statistical mechanics.

The thesis has two main parts. The first applies field theory methods to statistical mechanics. In particular, statistical systems are related to fermionic-
like field theories through a path integral representation. Such path integrals are over anticommuting variables. The basic definitions, ideas, and uses of anticommuting variables are presented in Chapters I and II. Previously solved models are resolved quickly and simply. Considered are the Ising model, the free-fermion model, and close-packed dimer problems on various lattices. Graphical calculational techniques are developed. They are powerful and yield a simple procedure to compute the vacuum expectation value of an arbitrary product of Ising spin variables. From a field theorist's point of view, these chapters are the simplest most logical derivation of the Ising model partition function and correlation functions. This work promises to open a new area of physics research when the methods are used to approximate unsolved problems.

Chapter III solves by the methods of Chapers I and II a new model named the $i 28$ pseudo-free vertex model.

The second part of the thesis applies statistical mechanics intuition to field theories. Chapter IV shows that certain relativistic field theories are equivalent to classical interacting gases. Using this analogy many results are obtained, particularly for the SineGordon field theory. The main results are enumerated in the summary to which the reader is referred. Chapter V
addresses the most important problem in strong interaction physics: quark confinement. The difficult task of proving confinement has confranted theorists for a decade. Chapser V, although not a proof of confinement, presents a logical, esthetic, and simple picture of how confinement works. A key ingredient is the insight gained by using an analog statistical system consisting of a gas of macromolecules. This analogy allows the computation of Wilson loops in the presence of topological vortices and when symmetry breakdown occurs in the topological quantum number. Topological symmetry breakdown calculations are placed on approximately the same level of rigor as instanton calculations. The picture of confinement, that emerges is similar to the dual Meissner type advocated by Mandelstam. Before topological symmetry breakdown, QCD has monopoles bound linearly together by three topological strings. Topological symmetry breakdown corresponds to a new phase where these monopoles are liberated. It is these liberated monopoles that confine quarks.

PRELIMINARY NOTES

A shortened version of Chapter IV has appeared in print in Physical Review D18, 916 (1978). The American Physical Society has granted permisbion for its inclusion in this thesis. Chapter V will be published in Nuclear Physics B. The other chapters have also been submitted for publication.

Each chapter has its own set of references, figures, and figure captions. These appear at the end of each chapter.

ACKNOWLEDGMENTS
I thank Harry Morriscil for reading Chapters I, II, and III. I thank Korkut Bardakci for discussions concerning the material in Chapters IV and V. I also thank him for his excellent guidance. I am grateful to both Harry Morrison and Korkut Bardakei for encouragenent.

TABLE OF CONTENTS

Abstract
Preliminary Notes

Part I Applications of Field Theory Methods

to Statistical Mechanics 1
Chapter I The Use of Anticommuting
Variable Integrals in Statistical
Mechanics I 2
I. Introduction 3
II. Integrals Over Anticommuting Variables 4
III. Sample Representations 8
IV. Quadratic Actions 14
V. The Operator Algetra 18
Appendix A 21
Appendix B 22
Footnotes and References for Chapter I 24
FIgures for Chapter I 25
Chapter II The Use of Anticommuting
Variable Integrals in Statistical
Mechanice II 44
I. Introduction 45
II. The Partition Functions for the Dimer and Ising Models 46
III. Graphical Evaluation of Partition Functions 53
IV. Solvahle Two-Dimensional Dimer
Problems 56
V. Anticommuting Variable Correlations 63
VI. The Ising Model Correlation
Functions 68
VII. Summary 73
References for Chapter II 75
Figures for Chapter II 76
Cnapter III The Pseudo-Free i28 Vertex Model 105
I. Introduction 106
II. The Model 107
III. The Solution 115
IV. The 128+8 Psoudo-Free Vertex Model 118
V. Conclusion 125
Appendix A 125
References for Chapter III 127
Figures and Tables for Chapter III 127
Part II Applications of Statistical Mechanics
to Field Theory 155
Chapter IV The Grand Partition Function
in Fleld Theory With Appications to the Sine-Gordon 156
I. Introduction 157
II. Gaussian Representation 160
III. Perturkative Verification 172
IV. The Two Dimensional Sine-Gordon 183
V. The Phases of the Sine-Gordon 187
VI. The Non-Linear σ-Model 195
VII. Renormalization 197
VIII. Tidbite 210
IX. Summary 216
References for Chapter IV 219
Tables and Figures for Chapter IV 222
Chapter V Topological Symmetry Breakdown
and Quark Confinement 228
I. Introduction 229
II. Closed Loop Gas as a Field Theory 234
III. Wilson Loops in the Presence of Topological Vortices 244
IV. z_{N} Vortices 253
V. Monopoles 277
VI. From $2+1$ to $3+1$ 281
VII. Relation to Mandelstam's Scheme 294
VIII. Open Questions 296
IX. Summary 301
References for Chapter V 305
Tables and Figures for Chapter V 310

FART I

APPLICATIONS OF FIELD THEORY METHODS TO STATISTICAL MECBANICS

CHAPTER I

the use of anticomndting variable

INTEGRALS IN STATISTICAL MECHANICS I

I. INTRODUCTION

This paper introduces a new method of attacking certain problems in statistical mechanics. It uses integrals over anticomuting variables to express partition functions in terms of field theories.

The interplay of field theory and statistical mechanies is important. Many complicated field theories have simple underlying statistical mechanics analogues ${ }^{1}$). This supplies physicel insight into these complicated field theoretic structures and allows one to extract the key concepts. On the other hand, when a statistical mechanics model is expressed as a field theory, various field theory techniques can be used such as perturbation theory, operator methods, variational methods, functional methods, ete. These are powerful avenues of attack, especially for extracting numbers. In short, the statistical mechanics point of view allows one physical insight whereas the field theory point of view supplies the powerful mathematical tools. It is therefore important to understand the connections between statistical mechanics and field theory. It is in this direction that this paper is written.

I shall use integrals over anticommuting variables. They were introduced to handle fermionic degrees of freedom in a path integral formulation ${ }^{2}$). Until recently ${ }^{3}$), they were usually used in formal ways, rarely being employed in actually calculatinns. In this paper and the following ones they will be used in a practical manner to obtiin numbers. They are, without a doubt, powerful mathematical tools. They supply relations, relate unrelated models, organized unruly algebra, and evoke rapid
calculations often in a few steps.
I will try to follow a logical development with a pedagogical touch. First, this paper will introduce and review integrals over anticommuting variables (Sec. II). I have tried to summarize their key properties. Further details may be found in the references. Next (Sec. TII) I will show how several problems may be expressed in terms of anticommuting variable integrals. This is a brute force method involving no elegance or ingenuity. Often a molel has several different representations. It. is important, therefore, to find the "best" and "efficient" ones. The fourth section will present a couple models in solvable form. Finally, I will discuss what these variables mean in the context of operator field theory.

This paper and the next deal only with solvable models. This is deliberate since it forms a testing ground on boh these methods work. In the next paper, the actually solution of the two solvable models presented in Sec. IV will be carried out.

II. INTEGRALS OVER ANTICOMMUTING VARIABLES

This section will review ${ }^{4}$) some properties of integrals over Grassmann variables. More details may be found in reference four. A set of N Grassmann (or anticommuting) variables are objects, $\eta_{\alpha}(\alpha=1,2, \cdots, N), \quad$ satisfying

$$
\begin{equation*}
\eta_{\alpha} \eta_{\beta}+\eta_{\beta} \eta_{\alpha}=0 \tag{2.1}
\end{equation*}
$$

In particular, $\eta_{\alpha}^{2}=0$. Taking sums and products the most general
construct is

$$
\begin{equation*}
\left.f=a_{0}+\sum_{\alpha} a_{\alpha}^{\eta_{\alpha}}+\sum_{\alpha<\beta} a_{0 \beta} \beta_{\alpha}^{\eta_{\beta}}+\cdots+a_{123} \ldots N^{\eta_{1}}\right]^{\eta_{2}} \cdots{ }^{\eta_{N}}, \tag{2.2}
\end{equation*}
$$

with the a's real or complex numbers. Functions of these variables are defined via Taylor series, which because of eq.(2.1) terminate at the Nth order. Equation (2.2) is the most general function, an Nth order polynomial.

The anticomuting variabie integral of a function, f, of the form of eq. (ट.c) is defined by

$$
\begin{equation*}
\int d_{\eta_{1}} f=\int d_{\eta_{1}} d_{\eta_{2}} \cdots d_{\eta_{N}} f \equiv a_{123} \cdots N \tag{2.3}
\end{equation*}
$$

The only term which contributes is the one where each if occurs precisely once, the sign being determined by the order (for example, $\int a \eta_{1} d \eta_{2} \eta_{2} \eta_{1}=-1$). Often $\eta^{\prime} s$ are associated in pairs (or conjugates), one of which will have a dagger (i.e. $r_{\alpha} \alpha$ and η_{α}^{+}). This is convenient for determining the sign of an integral. For these the measure is defined as $\int \mathrm{d}_{\boldsymbol{\eta}} \mathrm{d}_{\eta}^{\dagger}=\int{\mathrm{d} \eta_{1}}^{\mathrm{d} \eta_{1}}{ }^{\dagger} \cdots \mathrm{d}_{\mathrm{N}} \mathrm{d}_{\mathrm{M}}^{\dagger}$. Statistical mechanics problems will involve spins, atoms, bonds, etc. at sites, \vec{x}, to which anticommuting variables will be assigned. The variable, \vec{x}, will range over the region of interest; for a cubic crystal this might de a three dimensional lattice so that $\vec{x}=(\alpha, \beta, \because)$ has integer coordinates. Often several variables are needed at a site, in which case, an additional
label, r, is required, and the η 's will appear as
$\eta_{\vec{x}}^{r}, \underset{x^{2}}{\eta_{r}^{r \dagger}}\{r=1,2, \cdots, T\}$ for T types. Graphically $\eta_{\vec{x}}$ and $\underset{x}{\underset{x}{\dagger}}$ may be represented by an " 0 " and an "x" at \vec{x}. Different types may be distinguished by using dieferent colors. The important point to remember is that a contribution to en integral occurs only if each site is covered by one "O" and one "x" of each color (type).

Key properties of these integrals which are consequences of eq. (1.3) are the following:

1. Shift of variable. Given J_{α} which anticommute with themselves and with all the $\eta^{\prime} s$,

$$
\begin{equation*}
\int d \eta f\left(\left[\eta_{\alpha}\right\}\right)=\int d \eta f\left(\left[\eta_{\alpha}+J_{\alpha}\right\}\right) \tag{2.4}
\end{equation*}
$$

2. Change of Variables. Let $\psi_{\alpha}=\sum_{B} A_{\alpha B} \eta_{B}$ (with A invertible) be linear combinations of $\eta^{\prime} s$ and henee an equivalent set of anticommating variables. Then

$$
\begin{equation*}
\int d \eta f(\eta)=(\operatorname{det} A) \int d \psi f\left(A^{-1} \psi\right) . \tag{2.5}
\end{equation*}
$$

Constrest this with normal (i.e. Riemann) integration where there is a factor $(\operatorname{det} A)^{-1}$ rather than $(\operatorname{det} A)$ in eq. (2.5).
3. Quadratic and Quadratic-like Actions.

$$
\begin{equation*}
\int \operatorname{d\eta d\eta }{ }^{\dagger} \exp \left(\sum_{\alpha \beta} \eta_{\alpha} A_{\alpha \beta} \eta_{\beta}^{\dagger}\right)=\operatorname{det} A \tag{2.6}
\end{equation*}
$$

$$
\begin{align*}
& \int d \eta \exp \left(\frac{1}{2} \sum_{\alpha \beta}{ }^{{ }^{1} \alpha} A_{\alpha \beta} \eta^{\eta} \beta\right)=\operatorname{Pr} A . \tag{c.7}
\end{align*}
$$

$$
\begin{align*}
& \int \mathrm{d} \eta_{\mathrm{d} \eta_{1}}{ }^{\dagger} \exp \left(\frac{1}{2} \sum_{\alpha \beta} \eta_{\alpha} \eta_{\alpha}^{\dagger} A_{\alpha \beta} \eta_{B} \eta_{B}^{\dagger}\right)=h f A . \tag{2.9}
\end{align*}
$$

These are respectively the determinant, Pfaffian ${ }^{5}$), permanent, and hfaffian of A. Permanents and hfaffians are determinents and Pfaffians without the sign of permutation factor. In eqs. (2.7) and (2.9) A wust be even dimensional. In eq. (2.7) A may be chosen to be antisymmetric. In eq. (2.9) it may be chosen to be symmetric, but must have zero's along the diagonal. These equations are easily proved by expanding the exponents: permatations of products of $A_{\alpha \beta}$ are obtained with the appropriate combinatorial and sign factors. Equation (2.6), however, is easier to prove by transforming $\eta^{\dagger} \rightarrow A^{-1} \eta^{\dagger}$ and using eq. (2.5).

Anticommting variables are powerful objects. Let us demonstrate some of their power by proving the well known result ${ }^{6}$) that $(P f A)^{2}=\operatorname{det} A \quad$ for an antisymmetric even dimensional matrix. Usual proofs are quite curbersome. Use eq. (2.6) and rewriic $\eta_{\alpha}=\sqrt{\frac{1}{2}}\left(\eta_{\alpha}^{(1)}+i \eta_{\alpha}^{(2)}\right), \quad \eta_{\alpha}^{+}=\sqrt{\frac{1}{2}}\left(\eta_{\alpha}^{(1)}-i \eta_{\alpha}^{(2)}\right)$,
$d \eta_{\alpha}{ }^{d} \eta_{\alpha}^{\dagger}=i d \eta_{\alpha}^{(1)} d_{i=}{ }_{\underline{y}}^{(2)}$. Since A is antisymmetric
${ }^{\eta_{\alpha}} A_{\alpha \beta} \eta_{B}^{\dagger}=\frac{1}{2} \eta_{\alpha}^{(1)} A_{\alpha \beta} \eta_{\beta}^{(1)}+\frac{1}{2} \eta_{\alpha}^{(2)}{ }_{A_{\alpha \beta} \eta_{\beta}}{ }^{(2)}$ (the cross terms cancel).
The exponert factors into two exponents and the integral factorizes into two integrals, each of the form of eq. (2.7).

Finally, one may take derivatives of anticomuting variables.
For example, $\frac{d}{d \eta_{1}} \eta_{1}=1, \frac{d}{d \eta_{1}}{ }_{1}=0$. All the usuel rules of differentiation hold except for minus signs in the product rule due to anticommutetion relations. Thus $\frac{d}{d \eta_{1}}\left(\eta_{2} \eta_{1}\right)$ $=\left(\frac{\frac{\alpha}{d}}{d \eta_{1}} \eta_{2}\right) \eta_{1}-\eta_{2} \frac{d}{d \eta_{1}} \eta_{1}=-\eta_{\bar{c}}$. These derivatives act to the right. Derivatives acting to the left are defined analogously: $\eta_{I} \frac{\leftarrow}{d} \eta_{1}=1$. A powerful tool is the following:
4. Integration by parts. Given two functions, f and g,

$$
\begin{equation*}
\int \mathrm{d} \eta f \frac{\overrightarrow{\mathrm{a}}}{\mathrm{~d} \mathrm{\eta}} \mathrm{~g}=\int \mathrm{d}_{\boldsymbol{\eta}} \mathbf{f} \frac{\mathrm{a}}{\mathrm{~d} \eta} \mathrm{~g} . \tag{2.10}
\end{equation*}
$$

In conclusion, anticomuting variables may be manipulated, integrated, and differentiated much like ordinary variables except that anticommutation must be taken into account.

III. SAMPIE REPRESENTATIONS

In a dimer problem $6,7,8$) there are a set of sites and a set bonds connecting certain pairs of sites. The bonds may absorb dimers. If E_{b} is the energy of a particuiar dimer, $z_{b}=\exp \left(-\beta E_{b}\right)$ is the Boltmann factor associated with an absorption. A site may be used only once, so that no two dimers may overlap or even touch. Effectively any two dimers are infinitely repulsive. There are two kinds of problems: the close-packed
problem in wich every site must be covered exactly once, and the usual dimer problem where some sites may be left uncovered.

The statistical mechanics of this system is determined by the partition function. This partition function may be represented as an anticomuting integral. As an exarmple, let us consider the two dimensional close-packed dimer problem. Ihe sites are the integer lattice points (α, β) in a two dimensional plane. Bonds occur between nearest neighbors in the vertical and horizontal directions; z_{v} is associated with vertical bonds and z_{h} with horizontal bonds. The partition function is

$$
z\left(z_{h}, z_{v}\right)=\int{\operatorname{d\eta } \| \eta^{\prime}}^{\dagger} \exp \left[\sum _ { \alpha , \beta } \left(z_{h}{ }^{\eta} \alpha \beta{ }^{\eta}{ }_{\alpha \beta}^{\dagger}{ }^{\eta} \alpha+1 \beta^{\eta}{ }^{\eta} \alpha^{\dagger}+1 \beta\right.\right.
$$

$$
\begin{equation*}
\left.\left.+z_{v}^{\eta_{\alpha \beta} \eta_{\alpha \beta}^{n} c \alpha \beta+1^{\eta} \alpha \beta+1}\right)\right] \tag{3.1}
\end{equation*}
$$

There is an η and $\eta \dagger$ for each site, and the total measure is a product over all sites of the measure at each site. The operator
 02^{\sim} placing a dimer on the bond between (α, β) and $(\alpha+1, \beta)$ (see fig.1). If the option is exercised, a weight z_{h} results and no more dimers may be placed on sites invoiving (α, β) and ($\alpha+2, \beta$). Since the integral is zero unless every site is covered exactly once, eq. (3.1) is the partition function for the two dimensional close-packed dimer problem. This model (and, in general, any close-packed dimer model) is by eq. (2.9) a hfaffian. modifying the measure of eq. (3.1) by

$$
\begin{equation*}
\int d \eta d \eta^{\dagger} \rightarrow \int d \eta d \eta^{\dagger} \exp \left(\sum_{\alpha \beta} \eta_{\alpha \beta}^{\eta}{ }_{\alpha \alpha \beta}^{\dagger}\right) \tag{3.2}
\end{equation*}
$$

would produce the (usual) dimer partition function, since the ${ }^{T_{\alpha \beta}} \eta_{\alpha \beta \beta}^{\dagger}$ piece of $\exp \left(\eta_{\alpha \beta} \eta_{\alpha \beta}^{\dagger}\right) \equiv 1+\eta_{\alpha \beta} \eta_{\alpha \beta}^{\eta}$ would cover any uncovered site (α, β). On the other hand, for sites already covered by a dimer the 1 term would be used. The new action would be

$$
A_{\text {dimer }}\left(z_{h^{\prime}} z_{v}\right)=\sum_{\alpha \beta} \eta_{\alpha \beta}^{\eta}{ }_{\alpha \beta}^{\dagger}\left(1+z_{h}^{\eta} \alpha+1 \beta^{\eta}+1 \beta+z_{v}^{\eta} \eta_{\alpha \beta+1}^{\eta_{\alpha \beta+1}^{\dagger}}\right) \cdot(3.3)
$$

Equation (3.3) may be interpreted as the partition function of monomers and dimers where the enery of a monomer is zero. If E_{m} is the energy of a monomer, then

$$
\begin{align*}
A_{\text {dimer }}+\text { monomer }
\end{aligned}\left(z_{m}, z_{h}, z_{v}\right)=\sum_{\alpha \beta} \eta_{\alpha \beta}^{\eta_{\alpha \beta}^{\dagger}\left(z_{m}+z_{h}^{\eta_{\alpha \alpha+1 \beta^{\eta}} \alpha_{\alpha+1 \beta}}\right.} \begin{aligned}
&+ \\
&\left.+z_{v}^{\eta_{\alpha \beta+1}} \eta_{\alpha \beta+1}^{\dagger}\right), \tag{3.4}
\end{align*}
$$

with $z_{m}=\exp \left(-\beta E_{m}\right)$, is the partition function for dimers and monomers. By rescaling $\eta_{\alpha \beta} \rightarrow \sqrt{\frac{1}{z_{m}}} \eta_{\alpha \beta} \quad \eta_{\alpha \beta}^{\dagger} \rightarrow \sqrt{\frac{1}{z_{m}}} \eta_{\alpha \beta}^{\dagger} \quad$ one obtains

$$
\begin{equation*}
z_{\text {dimer }}+\text { monomer }\left(z_{\mathrm{m}}, z_{\mathrm{h}}, z_{\mathrm{v}}\right)=z_{\mathrm{m}}^{\mathrm{N}} \mathrm{z}_{\text {dimer }}\left(z_{\mathrm{h}} / z_{\mathrm{m}}^{2}, z_{\mathrm{v}} / z_{\mathrm{m}}^{2}\right), \tag{3.5}
\end{equation*}
$$

where \mathbf{N} is the number of sites. This result (that the partition function for dimers and monomers is simply related to the partition function for dimers alone) is easily derived using physical considerations. In general, there will be transformations on the Grassmann integral which yield results in a few steps that, unlike
this example, are difficult to obtain using pkysical arguments. This is one reason why anticonmuting variables are powerful.

To deal with a general dimer problem, let α be a labelling of sites. The set of bonds, B, is a set of pairs (α, β) having Boltrmann factors $z_{\alpha \beta}$. Then

$$
\begin{equation*}
z=\int d \eta_{d \eta}^{\dagger} \exp \left(\sum_{\alpha} \eta^{\eta} \alpha^{\eta} \alpha+\sum_{(\alpha, \beta) \in B} z_{\alpha \neq}{ }^{\eta} \alpha^{\eta} \alpha_{\alpha}^{\dagger} \eta_{\beta}^{\eta_{B}^{\dagger}}\right) . \tag{3.6}
\end{equation*}
$$

Dimer models are equivalent to $\eta \eta^{\dagger} \eta \eta^{\dagger}$ field theories with a kinetic energy term consisting only of a mass piece, $\eta \eta^{\dagger}$. The field theory methods that deal with $\eta \eta^{\dagger} \eta \eta^{\dagger}$ theories may be applied to dimer problems.

Almost all partition functions which have a graphical representation are expressible as anticomuting integrals. The d-dimensional Ising model ${ }^{9}$) has such a graphical representation ${ }^{6,7,8}$), where one sum's over closed non-overlapping but (possibly) intersecting polygonal curves; in two dimensions this is ortained by starting with configurations where all spins are dowr'and drawing curves around regions of up spin. There is e. Boltzmann factor for each unit of "Bloch" wall. Alternativsty, one may use bond variables ${ }^{10}$) (which works in any dimension) for which there is a similar representation with different Bloch wall Boltzmann factors.

Let us consider $d=2$. Then

$$
\begin{equation*}
z_{\text {Ising }}\left(J_{h}, J_{v}\right)=f z_{c l o s e d ~ p o l y g o n s ~}\left(z_{h}, z_{v}\right), \tag{3.7}
\end{equation*}
$$

where $Z_{I_{s i n g}}\left(J_{h}, J_{v}\right)$ is the Ising model partition function, with
horizontal and vertical spin couplings J_{h} and J_{V}, $Z_{\text {closed polygons }}\left(z_{h}, z_{v}\right.$) is the partition function for closed non-overlapping polygons with Boltmann weights, z_{h} and z_{v} for horizontal and vertical Bloch walls, and f is a multiplicative factor. For the first representation

$$
\begin{align*}
& \mathbf{f}=\exp \left[N\left(\beta J_{v}+\beta J_{h}\right)\right] \\
& \mathbf{z}_{h}=\exp \left(-2 \beta J_{v}\right), \tag{3.8}\\
& \mathbf{z}_{\mathbf{v}}=\exp \left(-2 \beta J_{h}\right),
\end{align*}
$$

where N is the number of sites. For the bond variable representation

$$
\begin{align*}
& f=\left(2 \cosh \beta J_{v} \cosh \beta J_{r}\right)^{N}, \\
& z_{h}=\tanh \beta J_{h}, \tag{3.9}\\
& z_{v}=\tanh \beta J_{v} .
\end{align*}
$$

Duality is the well known fact that the Ising model has these two representations relating low and high temperatures, one using bond variables on the lattice and one using disorder variables on the dual lattice.

To express the Ising model as a field theory, use four sets of anticommuting variables at a site $(\alpha, \beta),{ }_{\alpha \beta}^{\eta^{r}}$ and $\eta_{\alpha \beta}^{r \dagger}$ with $r=R($ "right"), L("left"), U("up"), or D("down") (see fig.2).

To draw the sides of polygons use dimer operators
$\eta_{\alpha \beta}^{R} \eta_{\alpha \beta}^{R+} \eta_{\alpha+1 \beta}^{\mathrm{L}} \eta_{\alpha+1 \beta}^{\eta^{\dagger}} \quad$ and $\quad \eta_{\alpha \beta}^{U} \eta_{\alpha \beta}^{U+D} \eta_{\alpha \beta+1}^{D} \eta_{\alpha \beta+1}^{D+}$ (see fig. 3). They give rise to a wall action

I next require "selection rules" at each (α, β) site. Suppose $\eta_{\alpha \beta}^{D} \eta_{\alpha \beta}^{D+} \eta_{\alpha \beta}^{R} \eta_{\alpha \beta}^{R+}$ is inserted in the integral, then only the configuration of (fig. Ha) may occur. Figure 4 illustrates the eight possibilities which can happen. To limit the graphs to these possibilities insert $1+g$ with

$$
\begin{align*}
g & =N^{R} N^{D}+N^{D} N^{L}+N^{L} N^{U}+N^{U} N^{R} \tag{2.11}\\
& +N_{N}^{U} D+N^{R_{N}} N^{L}+N^{R} N_{N} U_{N} N^{D},
\end{align*}
$$

where $N^{r}=\eta_{\eta}^{r}{ }^{r} \dagger$. By using $1+g=\exp |\ln (1+g)|=\exp \left(g-\frac{1}{2} g^{2}\right)$ an action for these selection rules is obtained

$$
\begin{align*}
A_{\text {s.r. }}= & \sum_{\alpha \beta}\left(N_{\alpha \beta}^{R} N_{\alpha \beta}^{D}+N_{\alpha \beta}^{D} N_{\alpha \beta}^{L}+N_{\alpha \beta}^{L} N_{\alpha \beta}^{U}+N_{\alpha \beta}^{U} N_{\alpha \beta}^{R}\right. \\
& \left.+N_{\alpha \beta}^{U} N_{\alpha \beta}^{D}+N_{\alpha \beta}^{R} N_{\alpha \beta}^{L}-2 N_{\alpha \beta}^{R} N_{\alpha \beta}^{U} N_{\alpha \beta}^{L} N_{\alpha \beta}^{D}\right), \tag{312}
\end{align*}
$$

where again $N_{\alpha \beta}^{r}=\eta_{\alpha \beta}^{r} \eta_{\alpha \beta}^{r^{\dagger}}$. The total action for the Using model is $A=A_{\text {wall }}+A_{\text {str. }}$.

I call the above methoa of obtaining integral representations the "selection rule" method. By weighting the configurations of fig. 4, more general Ising-like models are obtained. Representations of more complicated models like the Baxter ${ }^{11}$) mode] can be derived in a similar manner.

The above representation of the Ising model is inefficient: It uses four sets of anticommuting variables per site; furthermore the action involves products of up to eight variables. Given a particuler model, there will be many Grassmann integral representations It is important to find efficient representations. Ingenuity in finding the "best" set of variables and the "best" actions will determine whether a model is exactly solvable and will detemane how well approximation methods work. In the next section, efficient representations are found for these two c-dimensional models.

IV QUADRATIC ACTIONS
Some models have quadratic action representations. I
call these pseudo-free theories because they are exactly solvable by the techniques that solve free theories. In this section I will represent the two dimensional close-packed dimer end Ising models as pseudo-free theories A later paper will calculate the partition functions and correlation functions.

The two dimensional dimer problem will be dealt with first. The method used to solve it closely follows the stendard metbod ${ }^{1 \times}$) of attack. In fact, I will be essentially reproducing the known method in integral form, circumventing a few algebraic steps along the way.

Take the lattice plane, group sites ints units of four, and use the labelling indicated in fig. 5. Sites 2 and 3 are called odd sites; sites 2 and 4 are called even sites. For each unit (α, β), assign four sets of anticonmuting variables, $r_{a \beta}^{r}, r_{\alpha \beta}^{r \dagger}(r=1,2,3,4)$, one for each of the four original lattice points. It will be shown that

$$
\begin{equation*}
z_{\text {dimer }}\left(z_{h}^{A}, z_{v}^{A}\right) z_{\text {dimer }}\left(z_{h}^{B}, z_{v}^{B}\right)=\int \operatorname{d\eta d}_{i}^{\dagger} \exp (A), \tag{4.1}
\end{equation*}
$$

where

$$
\begin{align*}
& A=A^{A}+A^{B}, \\
& A^{A}=\sum_{\alpha \beta}\left[z_{h}^{A}\left(\eta_{\alpha \beta}^{1} \eta_{\alpha \beta}^{2 \dagger}+r_{\alpha \beta}^{4 \dagger} \eta_{\alpha \beta}^{3}\right)\right. \tag{4.2}\\
& +2_{v}^{A}\left(\eta_{\alpha \beta}^{2} \dagger^{\eta}{ }_{\alpha \beta}^{3}+\eta^{4} \eta_{\alpha \beta}^{4} \eta_{\alpha \beta}^{1}\right) \\
& \left.+2_{h}^{A}\left(\eta_{\alpha \beta}^{-2} \eta_{\alpha+1 \beta}^{1}+\eta_{\alpha \beta}^{3} \eta_{\alpha+1 \beta}^{4 t}\right)+z_{v}^{A}\left(\eta_{\alpha \beta \beta+1}^{j} \eta_{\alpha \beta}^{4+}+\eta_{\alpha \beta}^{3} \Gamma_{\alpha \beta+1}^{2 \dagger}\right)\right],
\end{align*}
$$

and A^{B} is obtained by replacing z_{h}^{A} by z_{h}^{B}, z_{v}^{A} by $z_{v}^{B},{ }_{i}^{T}{ }_{\alpha \beta}^{r}$ by
 it has a simple graphical representation in fig. 6. Each of the eight dimer-like operators of fig. 6a corresponds to a term of eq.(4.2). The dimer object, $\eta_{\alpha \beta}^{1}{ }^{2}{ }^{2+}$, produces an " 0 " at 1 and an "x" at 2 in the (α, β) unit. Arrows are used to indicate the order of the η 's as illustrated in fig. 7. The dimers weighted by z^{A} factors are the ones with "c"'s on odd sites and " x "'s on even sites
and are called A-dimers. The B-dimers have "x"'s on odd sites and "o"'s on even sites.

We can now make contact with the usual method of solution. By the "golden rule" of Grassman integrals, each site must have an " x " and $8 n$ " 0 ". This means each site is covered by exactly one A-dimer and one B-dimer. Therefore, we have a simultaneous A and B Limer problem: Expand the B-action exponent and choose one configuration, b, which covers all sites with B-dimers. Let w_{b} be its weight (that is, the product of the z_{h}^{B} ard z_{v}^{B} factors; for example, if $z_{h}^{B}=z_{v}^{B}=z^{B}$ then $w_{b}=\left(z^{B}\right)^{N / 2}$ where N is the number of sites). Expanding the A-action exponent, each A-dimer covering results in diagrams of closed non-overlapping polygons and overlapping isolated dimer pairs (see fig. 2l, p. 233 of reference 7) with the proper weight (up to possibly a minus sign). A minus sign couid result because of reorderings of anticomuting variables in evaluating integrais. It is proven in Appendix A, however, that all terms are positive. The reader is invited to check some examples by using the rules of fig.8. Each configuration, b, of B-dimers yields $w_{b} Z_{\text {dimer }}\left(z_{h}^{A}, z_{w}^{A}\right)$. Equation (4.1) results by summing over all B-coverings.

Every planar close-packed dimer problem, which is exactly solvable by the usual teciniques, is expressible as an anticommuting integral over a quadratic action. At this stage, Grassmann integrals are used only as a bookkeeping device which organizes the algebra. No true progress has been made. The next example will obtain a quadratic action for the Ising model. Although similar to previous derivations, several simplifications are made.

I shall use eq. (3.7) which relates the Ising model to a sum over closed non-overlapping but (possibly) intersecting polygons. I shall then use the anticommuting variables to "draw" these configurations. Two sets of variables will be used at each
 " v " stand for horizontal and vertical. Consider

$$
\begin{equation*}
z_{\text {closed polygons }}\left(z_{h}, z_{v}\right)=(-1)^{N} \int d_{\eta} d_{\eta}+\exp (A) \tag{4,3}
\end{equation*}
$$

where N is the number of sites and

$$
A=A_{\text {Bloch wall }}+A_{\text {corner }}+A_{\text {monomer }},
$$

The Bloch wall action produces a unit of Bloch wall in either the horizontal or vertical direction [see fig. (9)] weighted by the appropriate Boltzmann factor. The term $A_{\text {corner }}$ produces the four corners of fig. (10) necessary to construct a ploygon. I have allowed for the most general quadratic form by weighting corners with the a_{i}. For the Using model, set $a_{i}=1$. Finally, $A_{\text {monomer }}$ fills all unoccupied $" h$ " and " v " sites with monomer.

Again, for the Ising model, set b_{h} and $b_{v}=1$. The eight possible configurations which can occur at a site are shown in fig. (11) with their weights. There is an extra (-1) for each site because of the $(-1)^{N}$ in eq. (4.3). The minus signs in configurations (b) through (g) always cancel in pairs and may be dropped. The extra minus sign in fig. (Ilh) is explained in Appendix B. This Appendix deals with minus signs due to reorderings of Grassmann variables. Finally, the double corners of fig. (12a,b) do not occur because a single corner uses up both horizontal and vertices variables. Equations (3.7), (4.3), and (4.4) form the quadratic action representation of the two-dimensional Isings model. V THE OPERATOR ALGEBRA

This section dissusses the operator aspects of Grassmann variables and their probabilistic interpretation.

In the previous two sections, partition functions have been expressed as fermionic field theories. By taking expectation values of Grassmann variables (as well as functions of them) we may treat then as operators. They act like "local observables", measuring tools with probabilistic interpretations. Consider for example, the two dimensional dimer problem whose action is given by eq. (3.3).

$$
\begin{equation*}
z\left(\eta_{\alpha \beta \eta_{\alpha \beta}}^{\dagger}\right)=\int \operatorname{d\eta d\eta }^{\dagger} \exp \left(A_{\text {dimer }}\right)\left(\eta_{\alpha \beta} \eta_{\alpha \beta}^{\dagger}\right), \tag{5.1}
\end{equation*}
$$

is the sum over dimer configurations with the restriction that no dimer be placed on the (α, β) site. Therefore, $\left\langle\eta_{\alpha p} \eta_{\alpha \beta}^{\dagger}\right\rangle$ is the probability that the (α, β) site is not covered by a dimer.

Likewise $\left\langle 1-\eta_{\alpha \beta} \eta_{\alpha \beta}^{\dagger}\right\rangle$ is the probability that (α, β) is covered. In general, the expectation value of an operator will be the probability that a corresponding configuration will occur.

What do the equations of motion mean? The equation for $\eta_{\alpha \beta}$ is obtained by taking $\frac{d}{d \eta_{\alpha \beta}} A_{\text {dimer }}$. Let 0 be an operator (i.e. some function of the $\eta^{\prime} s$ and $\eta^{\dagger} \cdot s$) and use integration by parts [eq. (2.10)]:

$$
\begin{equation*}
\left\langle\frac{d}{d \eta}{ }_{\alpha \beta} 0\right\rangle=\left\langle 0 \frac{d}{d \eta_{\alpha \beta}} A\right\rangle . \tag{5.2}
\end{equation*}
$$

Equation (5.2), which involves the equation of motion of $\eta_{\alpha \beta}$, will generate many probability relations and is quite useful. For example, let 0 be $\eta_{\alpha \beta}$ and let $P_{(\alpha, \beta)}^{0}, P_{(\alpha, \beta)}^{u}, P_{(\alpha, \beta) \operatorname{and}(\alpha, \beta+1)}^{u}$, etc. be respectively the probabilities that (α, β) is occupied, that (α, β) is unoccupied, that (α, β) and $(\alpha, \beta+1)$ are unoccupied, etc., then

$$
\begin{aligned}
P_{(\alpha, \beta)}^{o}= & z_{n}\left[P_{(\alpha, \beta) \text { and }(\alpha+1, \beta)}^{u}+P_{(\alpha, \beta) \text { and }(\alpha-1, \beta)}^{u}\right] \\
& +z_{v}\left[P_{(\alpha, \beta) \text { and }(\alpha, \beta+1)}^{u}+P_{(\alpha, \beta) \text { and }(\alpha, \beta-1)}^{u}\right] .
\end{aligned}
$$

I invite the reader to aerive this relation using physical considerations and compare it to the simple and powerful method of anticommuting variables.

The set of relations of eq. (5.2) along with the anticommutaticr equations [eq. (2.1)] determine the model. They are
an equivalent expression of it, because A is obtainable from eqs. (5.2). The Ising-like or dimer-like problems are uniquely cetermined by a set of lacal probability rulations. In field theory the equations of motion are foremost. The operator techniques used to attack such field theories may be used in statistical mechanics. I call this the operator method of local observables.

APFENDIX A

This Appendix treats the minus signs of the two dimensional close-packed dimer problem.

An isolated dimer pair between two neighboring sites r and s (see fig. 13) will be of the form $\eta_{m} \eta_{s}^{\dagger} \eta_{r}^{t} \eta_{s}+\eta_{r} \eta_{r}^{\dagger} \eta_{s} \eta_{s}^{\dagger}$; so it has has the correct sign.

To deal with a closed polygon, P, orient it counterclockwise
and call the parity of P the number of minus signs winich result from rule (b) of fig. 8. There are two types of polygons: type 1 (fig. 14a) and type 2 (fig. 14b). For type 1, there is a minus sign from rule (c) and no minus signs due to rule (a). Therefore, for type l, the overall sign is opposite to the counterclockwise parity of P. For type 2 , the identical conclusion is obtained using a similar approach. sesteleyn's theorem ${ }^{13}$) (which is easily verified for test examples and easily proven by induction on the area of P) says that the counterclockwise parity is $(-1)^{I+1}$ (where I is the number of interior points) if all elementary polygons (ones with no interior points) have odd parity. In fig. 14, for example, $I=1$ and the parity is even. With the arrow assignment of fig. 6, all elementery polygons are odd parity. We conclude all polygons having an even number of interior points have the correct sign. Fortunately only these kinds of polygons occur in a covering since dimers, covering two sites at a time, cannot cover regions of an odd number of sites. Therefore, all polygons have the correct sign.

APPENDIX B

In this Appendix, I will analyze the sign problem associated with eqs. (4.3) and (4.4). The conclusion will be that the sign of a configuration of polygons is equal to the number of intersections which occur. This explains the extra minus factor in the weight of fig. (17h). I will proceed in steps: first dealing with an isolated non-self-intersecting polygon, then with one that self-intersects, and finally dealing with a multipolygonal configuration.

Consider a closed polygon, P, which does not intersect itself. I will show that its sign is positive. Choose a horizontal bond of P and proceed to the right (and eventually around the polygon). Start at the " x " and use the rules of fig. 8 . When moving upward or to the right no minus signs result from rules (a) or (b) because arrows are in the correct direction and "o"'s occur before "x"'s. When moving downward or to the left, each site has a minus sign from rule (a) and a minus sign from rule (b). They cancel in pairs. Next consider what happens, when one goes around a corner. There are eight different types (see fig. 15) [two orientations times the four basic corners of fig. (10)]. They are oriented because we are moving around the polygon in a particular direction. Figure 15 summarizes the results: only corners of types d and \bar{d} lead to a minus sign. Now use the following theorem (which is easily proved by induction on the area or P): Let m_{a}, m_{b}, etc. be the number of type a, type b, etc. corners occurring in an oriented non-self-intersecting polygon, P. If P is counterclockwise oriented then

$$
\begin{aligned}
& m_{a}-m_{\bar{a}}=1, \\
& m_{b}-m_{\bar{b}}=1, \\
& m_{c}-m_{c}=1, \\
& m_{d}-m_{\bar{d}}=1,
\end{aligned}
$$

This implies that the sign due to corners is $(-1)^{m_{d}}(-1)^{m_{d}}=-1$. For clockwise oriented, P, the theorem holds with $a \leftrightarrow \bar{a}$, $\mathrm{b} \mapsto \overline{\mathrm{b}}$, etc. Rules (a) and (b) therefore result in one minus sign which when combined with the minus sign of rule (c) gives on overall plus sign.

Now consider an oriented self-intersecting polygon, P. It may be constructed from non-intersecting ones by the pasting construction of fig. 16. The order of the operators in P is indicated in Figure 17a. When they are regrouped into the forms occurring in the non-self-intersecting polygons (Figures 17 b and 17c) which "compose" P, a minus sign results for each intersection as Figure 17 illustrates.

Finally, the result holds for multipolygonal configurations because pairs of polygons can only intersect an even number of times. Sumarizing, an extra minus occurs for each intersection (fig. llh).

FOOTNOTES AND REFERENCES

1) S. Samuel, The Grand Partition Function in Field Theory with Applications to The Sine-Gordon Theory, to be published in Phys. Rev. D.
2) D. J. Chandlin, Nuovo Cimento 4, (1956) 231.
3) A practical application is S. Samuel, J. Math. Fhys. 19, (1978) 1438.
4) F. A. Berezin, The Method of Second Quantization (Academic, New York, 1966). See also the appendices of reference 3 .
5) The definition of a Pfaffian is $\operatorname{Pf} A=\frac{1}{2^{N / 2}} \frac{1}{\left(\frac{N}{2}\right):} \sum_{\sigma}(\operatorname{sign} \sigma) A_{\sigma(1) \sigma(2)^{A}}{ }_{\sigma(3)_{\sigma}(4)^{\cdots} A_{\sigma(N-1) \sigma}(N) .}$ The sum is over all permutations, 0 .
6) For example, B. M. McCoy and T. T. Wu, The Two-Dimensional Ising Model (Harvard University Press, Cembridge, 1973). The proof that $(\operatorname{Pf} A)^{2}=\operatorname{det} A$ cen be found on pages 47-51.
7) E. W. Montroll, in Brandeis University Summer Institute in Theoretical Physics, 1966, edited by M. Chrétien, E. P. Gross, and S. Deser (Gordon and Breach, New York, 1968).
8) H. S. Green and C. A. Hurst, Order-Disorder Phenomena (Interscience, New York, 1964).
9) There is an enormous amount of literature on the Ising model. See the references of reference 6 for a partial list.
10) See for example, pages 218-221 of reference 7 .
11) R. J. Baxter, Annals of Physics, 70, (1972) 193.
12) See pages 230-248 of reference 7.
13) See pages 236 and 237 of reference 7 .

Figure 1. The dimer cperators: (a) The horizontal dimer operator, $\eta_{\alpha \beta} \eta_{\alpha \beta}^{\dagger} \eta_{\alpha+1 \beta}^{\eta_{\alpha+1 \beta}} \stackrel{+}{\text { and (b) The vertical dimer operator }}$ ${ }^{\eta} \alpha \beta^{\eta}{ }_{\alpha \beta}^{\dagger} \eta_{\alpha \beta+1}{ }^{\eta}{ }_{\alpha \beta+1}^{\dagger}$.
Figure 2. The two-dimensional lattice used for the Ising model: (a) Each site has been replaced by four sites, and (b) The notation used to label sites. The pair, (α, β), labels the group and "Right", "Up", "Left", and "Down" are used to label types.

Figure 3. Bloch wall operators: (a) The horizontal dimer operator,
 ${ }_{\eta}^{\eta}{ }_{\alpha \beta} \eta_{\alpha \beta}^{U T} \eta_{C, 5+1}^{I} \eta_{\alpha \beta+1}^{D t}$.
Figure 4. The eight possibilities wich can happen at a vertex. In each case, the operator on the right will produce the dimer configuration on the left. Figures (a) - (g) represent the seven terms in eq. (3.11). To these one must add the last term which is the unity operator.

Figure 5. The lattice plane reorganized into groups of four sites each. Each unit is labelled by a pair of integers (α, β) and each of the four sites in a unit are labelled by $1,2,3$, or 4. Sites of type 1 and 3 are called odd sites, whereas sites of type 2 anci 4 az . even sites.

Figure 6. (a) The eight bonds corresponding to the eight terms in eq. (4.2). Each of these operators create A-dimers and is weighted by a z^{A} factor. The arrows indicate the order of the η 's (see fig. 7.). (b) The B-dimer operators which make up the B-dimer action, A^{B}.

Figure 7. The use of arrows to indicate operator ordering. On the left-hand side is the operator, $\eta^{\dagger} \dagger$, which equals minus the right-hand side operator, η^{+}. The arrow originates from the first anticommuting variable and terminates on the second one.

Figure 8, Sign rules. The rules for evaluating the sign of a "dimer loop" are as follows: Pick an initial "o" or "x" (here, " 0 " is chosen at A) and proceed around the loop (here, counterclockwise). There is a) a minus sign for each " x " occurring before an "0" (the point, B), b) a minus sign for each arrow in the opposite direction (the bond, c), and finally c) a minus sign if one begins with an " x ". In this figure the sign is positive.

Figure 9. Bloch wall operators: (a) is the graphical representation of $\eta_{\alpha \beta^{\dagger} \eta_{\alpha+1 \beta}}$ which occurs in eq. (4.4) and produces a horizontal Block wall; (b) is the vertical Bloch wall operator, ${ }_{\eta_{\alpha \beta}^{v^{\dagger}}}^{\eta_{\alpha \beta+1}^{v}}$.
Figure 10. The corner operators in eq. (4.4). In all cases they occur at the (α, β) site, that is corner operators only change the direction of a curve; they do not connect neighboring sites. Although one could use labels to distinguish horizontal and vertical variables, it's easier to use the following convention: if an "o" or an " x " has a horizontal line coming into or olt of it, it is a horizontal variable; on the other hand vertical variables have vertical lines flowing into or
out of them. For example, (a) involves a horizontal "x" or $\eta_{\alpha \beta}^{h t}$ and a vertical "o" or $\eta_{\alpha \beta}^{v}$. The arrow indicates the order, so that this term is ${ }_{\eta_{\alpha \beta}} \boldsymbol{\eta}^{\eta_{\alpha \beta}} v_{0}$, the first term in $A_{\text {corner }}$ of eq. (4.4). (b), (c), and (d) are the otr:er three terms.

Figure 11. The eight possible configurations that can occur at a site. When disorder variables are used [eq. (3.8)j, the first two columns represent corresponding spin configurations. In obtaining the weights of column 4 a (-1) factor has been included from the $(-1)^{N}$ of eq. (4.3). The minus signs in (b) through (g) may be eliminated because i) there are always an even number of (b) and (c) configurationa and ii) corners (d) and (f) as well as (e) and (g) occur in pairs. Alternatively, one could redefine the b 's and a's in eq. (4.4) to have minus signs. Configuration (h) has an extra minus sign due to reordering of anticommuting variables as described in Appendix B. The numbers in column 4 are easily obtained: For example, the b_{h} of (b) is obtained because a vertical bond enters and exits the vertical site and a norizontal monomer with b_{h} must fill the empty horizontal site.
Figure 12. Intersections. The double comers of figs. (a) and (b) are not allowed by eq. (4.3). When four lines meet at a site they must pass directly through as in fig. (c).

Figure 13. A typical dimer pair. The sign of this pair is plus since $\eta_{r} \eta_{s}^{\dagger}{ }^{\boldsymbol{\eta}}{ }_{r}^{+} \eta_{s}=+\eta_{r}{ }^{\eta_{r} \eta_{s} \eta_{s}{ }^{\dagger}}$.
Figure 14. The two types of polygons. Type 1 [fig. (a)] is characterized by the fact that $\eta \eta^{+}$occurs at each site when going counterclockwise around the polygon. Alternatively, as one goes around the curve the " x " occurs before the " 0 " in a given dimer. For type ? [fig. (b)], $\eta^{\dagger} \eta$ products occur at each site. The parity of this polygon will be even if all elementary polygons are counterclockwise odd. The assignment of arrows in fig. (6) does make all elementary squares of odd parity.
Figure 15. The eight oriented corners and the minus sign factors associated with them.

Figure 16. The pasting construction. Polygon, P, may be obtained from two (possibly self-intersecting) polygons, P_{1} and P_{2}, by cutting open the corners and rejoining. There are four (two different types of pairs of corners times two orientations) possible pasting constructions. Figure 17. How the minus sign arrises. This is just a "fermion" statistics effect. The order of operators in an intersection of P is indicated in Figure (a) and is $\left(\eta_{1}^{t} \eta_{3}\right)\left(\eta_{2} \dagger_{4}\right)$. When P is decomposed into non-intersetting polygons as in Figure 16, the order of the operators is that of (b) or (c). For case (b), $\left(\eta_{1}^{\dagger} \eta_{4}\right)\left(\eta_{2}^{\dagger} \eta_{3}\right)=-\left(\eta_{1}^{\dagger} \eta_{3}\right)\left(\eta_{2}^{\dagger} \eta_{4}\right)$, that is, there is a minus sign relative to (a). For case (c), $\left(\eta_{2}^{+} \eta_{1}^{\dagger}\right)\left(\eta_{4} \Pi_{3}\right)$ is also $-\left(\eta_{1}^{\dagger} \eta_{3}\right)\left(\eta_{2}^{\dagger} \eta_{4}\right)$.

$$
\bullet \quad \bullet \quad \bullet \quad \bullet
$$

$$
\begin{array}{ccc}
\bullet & \bullet \\
(\alpha, \beta)(\alpha+(\beta)
\end{array} \cdots
$$

$$
\text { Figure } 1
$$

$$
\begin{array}{ll}
0 \cdot & 0 \cdot \\
0 & 0 \\
0 & \bullet \cdot \\
0 & 0 \\
0 & 0
\end{array}
$$

(0)

(c)

(d)

(h)

Figure $4 \times 817810-11560$

-4	3	$\bullet 4$
-1	2•	$\bullet 1$

-4	$3 \cdot$	-4
(α, β)	$(\alpha+1, \beta)$	
-1	$2 \cdot$	$\bullet 1$
-1		

Figure $5 \quad \times$ 日L 7810-11564

Figure 7
 XBL7810-11569

Figure 8
X8L7810-11570

$\longrightarrow \longrightarrow-0$
 $(\alpha, \beta) \quad(\alpha+1, \beta)$

(a)

(b)

XBL 7810-11562

Figure 10
XBL78IO-11563

(c) $\dot{f}_{\dagger}^{4} \sim \psi_{4}^{\frac{1}{1}} \sim \rightarrow \quad(-) b_{V}$

(e) $\hat{1}_{4}^{4} \sim \frac{1}{4} \cdot \frac{1}{1} \sim \rightarrow \quad(-) a_{2}$

(g) $4_{4}^{4} \sim \underset{\downarrow}{\frac{1}{\dagger} \cdot \frac{1}{\psi}} \sim \quad d \quad(-) a_{4}$
(h) $\underset{\downarrow}{4} \sim \underset{4}{\downarrow} \sim \frac{1}{t} \sim+\quad(-)(-)=+$

Figure 11

Figure 23 XBL7810-11575

(a)

(b)

Figure $14 \quad$ XBL 7810-1I559

王
ro
\int^{10}

王
人。

モ
L 10

CHAPIER II

THE USE OF ANTICOMMUTING VARIABLE INTEGRALS IN STATISTICAL MECHANICS II

J.. INTRODUCTION

In the first paper ${ }^{1}$) (to be referred to as I) certain partition functions are represented as fermionic-like lattice field theories using Gressmann integrals. This allows one to use powerful field theory methods to attack statistical mechanics problems. Several models had quadratic action representations. Among these were the two-dimensional Ising model and the two-dimensional square Lattice dimer problem. They are pseudo-free theories and are exactly solvable. In this paper, these two partition functions are explicitly computed (Sec. II). This is a straightforward calculation: one transforms to momentum space just as one would do with a free field theory. This partically diagonalizes the problem; it breaks up into a product of 4×4 determinants. Next, graphical methods are introduced to organize the algebra (Sec. III). They are useful because they are systematic and pictorial. Section IV considers the general class of solvable Z-dimensional close-packed dimer problems on various lattices. A set of rules are derived which quickly compute partition functions. These rules are illustrated using the square lattice and applied to the hexangonal lattice. Next, the rules are extended to general pseudo-free theories. This means that, given any quadratic action, there is a simple systematic calculational procedure. For the free fermion model anticomnuting variable correlations are calculated (Sec. V). They are first considered in momentum space where the computictions reduce to solving modified miniature dimer problems. The Ising model is included in the free fermion model, so that the results of Sec. V can be used to calculate spin correlations. Section VI exemplifies
th: s by considering two horizontal spins. The approach generalizes so that one may, in principle, compute the vacuum expectation value of an arbitrary number of spins, although the form of the answer is cumbersome. This is because spin variables, which are the physical variables, are complicated functions of the anticommuting variables, which are the mathematical variables in terms of which computations are simple.

Paper I was a pedagogical introduction to Grassmann integral techniques. It emphasized how to use anticomuting variables and how to express partition functions as fermionic-like field theories. This paper emphasizes computational methods. It illustrates how to calculate partition functions and correlation functions. It provides graphical rules which simplify complicated calculations.

This paper considers only solvable models. They form the testirg ground to see now and if the techniques work. They also form a solid foundation upon which unsolved problems may be attacked by approximation methods. The real power of anticommating variables will come when they are applied to these unsolved models.
II. THE PARTIIION FUNCIIONS FOR THE DIMER AND ISING MODELS.

In paper I, the two-dimensional Ising model was represented as a Grassmann integral over a pseudo-free fermionic-like action. A similar representation was obtained for the close-packed dimer problem. By pseudo-free action, I mean a quadratic action. Such theories are solvable by the same methods that solve free theories: transform to momentum space. This partially diagonalizes the problem because of translational invariance. What results is a product of Pfaffians of $4 T \times 4 T$ dimensional matrices. The variable, T, is the number of
η 's and η^{\dagger} 's per site. If bilinears occur as $\eta \eta^{t}$'s the problem simplifies to a product of determinants of $T \times T$ dimensional matrices. This is why it is important that the number of variables per site not be too large.

I will always choose α to range from $-M$ to M and β to range from $-N$ to N, so that there are $(2 N+1)$ rows and $(2 M+1)$ columns. In the Ising model there are $(2 N+1)(2 M+1)$ sites, whereas in the dimer problem, there were 4 sites per (α, β) unit so that there are $4(2 N+1)(2 M+1)$ sites in all.

Going to momentum space means writing

$$
\begin{align*}
& \eta_{\alpha \beta}^{r}=\sum_{s, t} \frac{1}{\sqrt{2 M+1}} \frac{1}{\sqrt{2 N+1}} \exp \left(\frac{2 \pi i \alpha s}{2 M+1}+\frac{2 \pi i \beta t}{2 N+1}\right)^{r} \frac{r}{s i} \tag{2.1}\\
& \eta_{\alpha \beta}^{r}=\sum_{s, t} \frac{1}{\sqrt{2 M+1}} \frac{1}{\sqrt{2 N+1}} \exp \left(\frac{-2 \pi i \alpha s}{2 M+1}-\frac{2 \pi i \beta t}{2 N+1}\right) a_{s t}^{r^{+}} .
\end{align*}
$$

In eq. (‥1) $a_{s t}^{r}$ and $a_{s t}^{r^{\dagger}}$ are an equivalent set of anticommuting variables; s ranges from $-M$ to M and B ranges from $-N$ to N. The determinant of this transformation is one. One should think in terms of the correspondence:

$$
\begin{align*}
& (\alpha, \beta) \leftrightarrow(x, y), \tag{2.2}\\
& \left(\frac{2 \pi s}{2 M+1}, \frac{2 \pi t}{2 N+1}\right) \leftrightarrow\left(p_{x}, p_{y}\right)
\end{align*}
$$

The variables s and t are simply momentum variables. Equation (2.1) implies periodic boundary conditions. Trese conditions will always be chosen, so that one is working on a torus ${ }^{2}$).

Eq'ation (2.1) implies the following useful formula: :

$$
\begin{aligned}
& \sum_{\alpha \beta} \eta_{\alpha \beta}^{q}{ }_{\alpha}^{r}{ }_{\alpha \beta}^{r}=\sum_{s t} e_{s t}^{q} a_{s t}^{r},
\end{aligned}
$$

$$
\begin{align*}
& \sum_{\alpha \beta}{ }_{\eta_{c \beta}^{q}}^{t}{ }_{\eta_{\alpha \beta+1}^{r}}^{r}=\sum_{s t} g_{s t}^{q} a_{s t}^{r} \exp \left(\frac{2 \pi i t}{2 N+1}\right) \text {, } \tag{2.3}\\
& \sum_{\alpha \beta}{ }_{\eta_{\alpha \beta}^{q}}^{q}{ }_{\eta_{\alpha \beta+1}}^{r^{t}}=\sum_{s t} a_{s t}^{q}{\underset{s t}{r^{t}}}^{e x p}\left(\frac{-2 \pi i t}{2 N+1}\right), \\
& \sum_{\alpha \beta}{ }_{\alpha}^{\eta}{ }_{\alpha \beta}^{q}{ }_{\alpha \alpha \beta}^{r}=\sum_{s t}{ }_{a_{s t}^{q}}^{a_{-s-t}^{r}} \\
& \sum_{\alpha \beta}{ }_{\eta_{\alpha \beta}^{q}}{ }^{\dagger} \eta_{\alpha \beta}^{r^{\dagger}}=\sum_{s t}{ }_{a}^{q}{ }_{s t}^{\dagger}{ }_{a}^{r^{\dagger}}{ }_{-s-t}
\end{align*}
$$

The variables, q and r, refer to the types of anticomating variables. The "operator" exp $\left(\frac{2 \pi i s}{2 N+1}\right)$ is like the quantum mechanical operator $\exp \left(i \Delta x p_{x}\right.$) which shifts one unit in the x-direction.

Let us first solve the close-packed dimer problem. The square of the partion function has the representation given by eqs. (I.4.1) and (I. 42). Using eqs. (2.1) and ($c, 3$)

$$
\begin{aligned}
& z_{\text {dimer }}^{2}\left(z_{h}, z_{v}\right)=\int \text { dada }^{\dagger} \exp (A), \\
& A=\sum_{s t} A_{s t} \quad,
\end{aligned}
$$

$$
\begin{aligned}
& \left.+z_{v}\left(a_{s t}^{1}{ }^{a_{s t}}{ }_{s t} \exp \left(\frac{2 \pi i t}{2 N+1}\right)+a_{s t}^{3} a_{s t}^{2^{t}} \exp \left(-\frac{2 \pi i t}{2 N+1}\right)\right)\right] \\
& +\mid \text { term with } a_{s t}^{r} \text { and } a_{s t}^{r^{\dagger}} \text { interchanged and } \\
& \text { exponents conjugated]. }
\end{aligned}
$$

In going from paper I to eq. (2.4) I have set $z_{h}^{A}=z_{h}^{B}=z_{h}$ and $\quad \mathbf{z}_{\mathbf{v}}^{A}=\mathbf{z}_{\mathbf{v}}^{\mathbf{B}}=\mathbf{z}_{\mathrm{v}}$.

The integrals over each (s, t) can be done individually using eq. (I. 2.6) jielding the determinent of the following martix:

$$
M_{s t}=\left(\begin{array}{cccc}
0 & h_{s} & 0 & v_{t} \tag{2.5}\\
-h_{-s} & 0 & v_{t} & 0 \\
0 & -v_{-t} & 0 & -h_{-s} \\
v_{-t} & 0 & h_{s} & 0
\end{array}\right)
$$

with

$$
\begin{gather*}
h_{s}=z_{n}\left(1-\exp \frac{2 \pi i s}{2 M+1}\right) \\
v_{\tau}=z_{h}\left(1-\exp \frac{2 \pi i t}{2 N+1}\right) \tag{2.6}\\
\operatorname{det} M_{s t}=\left(h_{s} h_{-s}+v_{t} v_{-t}\right)^{2}=\left[\left(2-2 \cos \frac{2 \pi s}{2 M+1}\right)_{L_{1}}^{2}+\left(2-2 \frac{2 \pi t}{2 N+1}\right) z_{v}^{2}\right]^{2} .
\end{gather*}
$$

The total answer is the product of these determinants:

$$
\begin{equation*}
z_{\text {dimer }}^{2}\left(z_{v}, z_{h}\right)=\prod_{s=-N}^{M} \prod_{t=-N}^{N} \operatorname{det} M_{s t}=\exp \left\{\sum_{s=-M}^{M} \sum_{t=-N}^{N} \operatorname{Ln}\left(\operatorname{det} M_{s t}\right)\right\} . \tag{2.8}
\end{equation*}
$$

The free energy per unit site in the thermodynamic limit, $\mathrm{f}=-\mathrm{kT} \ln \mathrm{Z}$, becomes

$$
\begin{equation*}
-\beta f=\frac{1}{4} \int_{-\pi}^{\pi} \frac{d p_{x}}{(2 \pi)} \int_{-\pi}^{\pi} \frac{d p_{y}}{(2 \pi)} \ln \left[\left(2-2 \cos p_{x}\right) z_{h}^{2}+\left(2-2 \cos p_{y}\right) z_{v}^{2}\right], \tag{2.9}
\end{equation*}
$$

which agrees with the well-known answer ${ }^{3,4,5,6}$). In obtaining eq. (2.9) sums have been replaced by integrals in the standard way and $p_{x} \equiv \frac{2 \pi s}{2 M+1}$ and $p_{y} \equiv \frac{2 \pi t}{2 N+1}$. Finally the factor of $\frac{1}{4}$ is due to fact that there are $4(2 N+1)(2 M+1)$ sites.

Now consider the two-dimensional Ising model, which can be yelated to the partition function for closed polygons (reviewed in Section III of paper I). The corresponding action is given by eq. (I. 4.4). In calculating the partition function, any values of b^{\prime} s and a 's satisfying $b_{h}= \pm 1, b_{v}= \pm 1, a_{1} a_{3}=1, a_{2} a_{4}=1$, may be used. For convenience choose $b_{b}=b_{v}=1, a_{1}=a_{3}=1$, and $a_{4}=-a_{2}=i$. Equations (I. 4.4), (2.1), and (2.3) result in the action

$$
\begin{aligned}
& A_{\text {closed polygons }}=\sum_{s t} A_{s t}, \\
& A_{s t}=\left[z_{h}{ }^{h^{h}}{ }_{s t}{ }^{a_{s t}} \exp \left(\frac{2 \pi i s}{2 M+1}\right)+z_{v} a_{s t^{\prime}}{ }^{\dagger} v_{s t} \exp \left(\frac{2 \pi i t}{2 N+1}\right)\right.
\end{aligned}
$$

The (s, t) variables mix with ($-s,-t$) variables. Therefore, after doing the integrations, eq. (2.10) will result in a product of Pfaffians of 8×8 dimensional matrices. However, transforming

$$
\begin{gather*}
a_{s t} \rightarrow a_{s t}^{t}, \tag{2.11}\\
a_{s t}^{\dagger} \rightarrow-a_{s t},
\end{gather*} \quad\left(\begin{array}{c}
s<0 \\
o r \\
s=0 t<0
\end{array}\right)
$$

for both horizontal and verical variables, the action, (except for A_{00}) becomes of as ${ }^{\dagger}$ form (this would not have worked for the choice $\left.a_{4}=a_{2}=1\right):$

$$
\begin{aligned}
& A_{s t}=\left[h_{s} a_{s t}{ }^{h} a_{s t}{ }^{\dagger}+v_{t} a_{s t^{\prime}}{ }^{v}{ }_{s t}^{\dagger}\right.
\end{aligned}
$$

where

$$
\begin{align*}
& n_{s}=1-z_{h} \exp \left(\frac{2 \pi i s}{2 M+1}\right), \tag{2.13}\\
& v_{t}=1-z_{v} \exp \left(\frac{2 \pi i t}{2 N+1}\right),
\end{align*}
$$

By eq. (I. 2.6) the integration over (s, t) and ($-s,-t$) variables is the determinant of the following matrix:

$$
M_{s t}=\left(\begin{array}{cccc}
h_{s} & -1 & 0 & -i \\
-1 & v_{t} & i & 0 \\
0 & -i & h_{-s} & -1 \\
i & 0 & -1 & v_{-t}
\end{array}\right) \quad(s, t) \neq(0,0) \cdot(2.14)
$$

$\operatorname{det} M_{s t}=h_{s} h_{-s} v_{t} v_{-t}-\left(h_{s}+h_{-s}\right)\left(v_{t}+v_{-t}\right)+4$

$$
\begin{align*}
=\left(1+z_{h}^{2}\right)\left(1+z_{v}^{2}\right) & +2\left(1-z_{v}^{2}\right) z_{h} \cos \frac{2 \pi s}{2 M+1} \\
& +2\left(1-z_{h}^{2}\right) z_{v} \cos \frac{2 \pi t}{2 N+1} . \tag{2.15}
\end{align*}
$$

The $(0,0)$ integral must be done separately and gives - $\left(\operatorname{det} M_{O O}\right)^{1 / 2}$.

I conclude

$$
\begin{aligned}
& z_{\text {closed polygon }}=\prod_{s t}\left(\operatorname{det} M_{s t}\right)^{1 / 2}, \\
&=\exp \left[\frac{1}{2} \sum_{s t} \ln \left(\operatorname{det} M_{s t}\right)\right], \\
& \rightarrow \exp \left\{(2 N+1)(2 M+1)\left(\frac{1}{c}\right) \int_{-\pi}^{\pi} \frac{d p_{x}}{2 \pi} \int_{-\pi}^{\pi d p_{i}} \frac{y}{2 \pi}\right. \\
&\left.\times \ln \left[\left(1+z_{h}^{2}\right\rangle\left(1+z_{v}^{2}\right)+2\left(1-z_{v}^{2}\right) z_{h} \cos p_{x}+2\left(1-z_{h}^{2}\right) z_{v} \cos p_{y}\right]\right\}
\end{aligned}
$$

The exponent, $1 / 2$, compensates for double counting (s, t) and ($-s,-t$). In the last step of eq. (2.16) the thermodynamic limit bas been taken. The angular integration variables, p_{x} and p_{y}, are simply momentum variables. Equations (2.16), (I. 3.7), and (I3.8) [or (I. 3.9)] yield the famous Onsager result ${ }^{7}$) for the free energy per unit site

$$
\begin{aligned}
-\beta f_{\text {Ising }}= & \frac{1}{2} \int_{-\pi}^{\pi} \frac{d p_{z}}{2 \pi} \int_{-\pi}^{\pi} \frac{d p_{y}}{2 \pi} \ln 4\left[\cosh 2 \beta J_{v} \cosh 2 \beta J_{h}\right. \\
& \left.+\sinh 2 \beta J_{h} \cos p_{x}+\sinh 2 \beta J_{v} \cos p_{y}\right]
\end{aligned}
$$

III. GRAPHICAL EVALUATION OF PARTIIIION FUNCTIONS

In this section I will introduce a graphical method to calculate partition functions. Later, it will be extended to correlation
functions. I do this because when the number, T, of variables at a site becomes large, the evaluation of Pfaffians and determinants becomes cumbersome. It is important to have a systematic approach. I will introcuce a diagramatic method which organizes the algebraic computations. For the models dealt with so far, it will seem superfluous; however, when more complicated models are encountered, it will be quite usefuz. The one danger is the possibility of overlooking a graph.

Consider $A_{\text {st }}$ in eq. (2.4). It is like a miniature dimer problem on four sites. The first and second brackets [or the left hand side of eq. (2.4)] correspond respectively to the dimers of figs. la and lb . Together they form the miniature dimer problem of fig. lc. Figure 2 gives the four possible coverings of fig. le and their weights. Overall signs are determined by the rules of fig. (I.8). The sum of these diagrams yields eq. (2.7) as it should.

Let us now solve the generalized closed polygon problem given by (I. 4.4), using the diagrammatic approach. This model is called the free-fermion model ${ }^{8}$). This problem has been solved by expressing the partition function as a product of fermion creation and annihilation operators acting on a vacuum ${ }^{9}$). This is the reason for the name free-fermion. The metbod of reference 9 is, however, different from the one used here. In particular, anticommuting variables satisfy $\left\{\eta^{r}, \eta^{\boldsymbol{s}}\right\}=0$ and cannot be thought of creation and annihilation oper\&tors which satisfy $\left(\psi^{r^{\dagger}}, \psi^{\boldsymbol{s}}\right)=\delta_{r s}$.

In momentum space the action of eq. (I. 4.4) becomes

$$
\begin{aligned}
& \left.+b_{h}{ }^{h}{ }_{s t} a_{s t}^{h^{t}}+b_{v} a_{s t}^{v} a_{s t}^{v^{\dot{d}}}\right] \text {. }
\end{aligned}
$$

If (s, t) and ($-s,-t$) variables are grouped together, the miniature dimer problem associated with eq. (3.1) is illustrated in fig. 3. There are nine possible coverings as fig. 4 shows. The sum of these is

$$
\begin{align*}
I\left(\frac{2 \pi s}{2 M+1}, \frac{2 \pi t}{2 N+I}\right) & =h_{s} h_{-s} v_{t} v_{-t}-a_{1} a_{3}\left(h_{s} v_{t}+h_{-s} v_{-t}\right) \tag{3.2}\\
& \left.-a_{2}{a_{4}} h_{s} v_{-t}+h_{-s} v_{t}\right)+\left(a_{1} a_{3}+\varepsilon_{2} a_{4}\right)^{2},
\end{align*}
$$

where

$$
\begin{align*}
& h_{s}=b_{h}-z_{h} \exp \left(\frac{2 \pi i s}{2 M+1}\right) \\
& v_{t}=b_{v}-z_{v} \exp \left(\frac{2 \pi i t}{2 N+1}\right) \tag{3.3}
\end{align*}
$$

$L_{1}\left(\frac{2 \pi s}{2 M+1}, \frac{2 \pi t}{2 N+1}\right)=\left[\left(b_{h}^{2}+z_{h}^{2}-2 z_{h} b_{h} \cos \frac{2 \pi s}{2 M+1}\right)\left(b_{v}^{2}+z_{v}^{2}-2 z_{v} b_{v} \cos \frac{2 \pi t}{2 N+1}\right)\right.$

$$
-2\left(a_{1} a_{3}+a_{2} a_{4}\right)\left(b_{h}-z_{h} \cos \frac{2 \pi S}{2 M+1}\right)\left(b_{v}-z_{v} \cos \frac{2 \pi t}{2 N+1}\right)
$$

$$
+2\left(a_{1} a_{3}-a_{2} a_{4}\right) z_{h} z_{v} \sin \frac{2 \pi S}{2 M+1} \sin \frac{2 \pi t}{2 N+1}
$$

$$
\begin{equation*}
\left.+\left(a_{1} a_{3}+a_{2} a_{4}\right)^{2}\right] \tag{3.4}
\end{equation*}
$$

The partition function is

$$
\begin{equation*}
Z_{\text {free fermion }}=\left(\prod_{s t} L(s, t)\right)^{1 / 2}, \tag{3.5}
\end{equation*}
$$

which becomes in the thermodynamic limit

$$
\begin{equation*}
-\beta f_{\text {free fermion }}=\frac{1}{2} \int_{-\pi}^{\pi} \frac{d p_{x}}{2 \pi} \int_{-\pi}^{\pi} \frac{d p_{y}}{2 \pi} \ln L\left(p_{x}, p_{y}\right), \tag{3.6}
\end{equation*}
$$

where L is given by eq. (3.4). The factor of $1 / 2$ is due to double counting of (s, t) and ($-s,-t$). Equations (3.4) and (3.6) agree with the known result ${ }^{8,10}$).
IV. SOLVABLE THO-DIMENSIONAL DIMER PROBLEMS

This section considers solvable two-dimensional dimer problems. By solvable, I mean solvable by the usual Pfaffian methods ${ }^{5}$). The models will be translated into Grassmann integral form, from which a series of graphical rules will be derived. The treatment used here does not differ from the usual Pfaffian treatment. What is gained is a simple graphical approach wich allows one to rapidly solve
a dimer problem. Furthermore, the diagranmatic methods extend to any pseudo-free field theory. This section serves as a pedagogical introduction to graphical methods.

I refer the reader to the standard metho of solution ${ }^{5}$). There are two key points:
I. Solvahility Condition. A planar dàmer problem is solvable if its bonds may be oriented so that every elementary polygon is clockwise odd. Planar means it may be drawn on a piece of paper sc that bonds do noc -oss. The bonds are then given an orientation. The direction is usually denoted by an arrow. A polygon is clockwise odd, if when traversing clockwise, one encounters an odd number of bonds oriented in the opposite direction. An elementary polygon is a nor self-intersecting polygon made up of bonds which has no bonds in its interior.
II. The Method of Solution. Fix a standard B configuration which covers the lattice. Each covering (these new ones will be called A coverings) when combined with the B configuration results in a set of closed polygons and isolated dimer pairs, the partition function of which has a Pfaffian representation.

Condition I and Observation II make the problem solvable by Pfaffian methods ${ }^{5}$).

For every model satisfying I, the Method of Solution II can be translated into Grassmann integral form: A bond oriented from point, P, to point, Q, upon which on A-dimer may be pleced corresponds to a term $\eta_{P} \eta_{Q}$ in the action (see fig. 5a). A standard B-bond between P and Q corresponds to a term $\eta_{Q}^{\dagger} \eta_{P}^{\dagger}$ (see fig. 5b). A-dimer operators are ordered with the graph orientatinns, whereas

B-dimer operators are ordered oppositely to the graph orientations. The action is schematically of the form

$$
\begin{equation*}
A_{\text {dimer }}=\sum_{A \text {-dimérs }} z_{A} \eta \eta+\sum_{B \text {-diners }} \eta_{\eta}^{\dagger} . \tag{4.1}
\end{equation*}
$$

The Boltzmann factors of A-dimers are z_{A}, whereas B-dimers have unit Boltzmann factors. It is not hard to see that this action produces the closed polygons and isolated dimer pairs used in the Method of Solution II. The signs are all positive because of Condition I. This may be proved by induction on the length of a polygon and employing Kasteleyn's theorem ${ }^{11}$). Figure $6 a$ illustrates one set of orientations on a square lattice which makes every elementary polygon clockwise odd. Figures $6 b$ and $6 c$ show the A-dimers and a standard B-dimer configuration consisting of horizontal dimers. It is convenient to group the sites in units of four E_{s} in fig. (I.5). The corresponding action is
where the notation is that of Paper I (secs. III and IV). Some dimer problems setisfy

Simplifying Condition C. A graph satisfies Simplifying

 Condition C if vertices can be grouped into two sets (which I call odd and even) such that no two odd (or even) vertices have a bond in comon.When this condition is satisfied, transform $\eta_{1} \rightarrow \eta_{1}^{\dagger}$ and $\eta^{\dagger} \rightarrow \eta$ at ail even sites. This makes the bilinears in the action of the form $\eta \eta^{\dagger}$, the partition function becomes a product of determinants rather than Pfaffians, the graphical rules simplify, and calculetions are easier to do. Figure 7 shows the rectangular lattice after this transformation.

Graphical Rules When Condition C Holds
or
Rules When Bilinears Are of $0 n^{\dagger}$ form

1. Group vertices into repeating units that fill a square array. Use (α, β) to label the units and use $r=1,2,3, \cdots, T$ to label the different vertices within a unit. Figure (I.5) is an example for the square lattice.
2. Consider one unit, U. There are two kinds of bonds: (a) those which are conteined within U and (b) those which go from U to some other unit. Of the latter, [(b)], for every bond which goes from a type r vertex in U to a type q vertex in anot'ser unit, there is one bond which goes from a type r vertex in another unit to a type q vertex in U. Thus, they occur in pairs. Helf are to be included in U and the others ignored and erased. Figure 8 illustrates this for the square lattice.
3. Keep (a) type bonds as they are. For a (b) type bond which goes from an r in U to a q in another unit, "fold" it back into U, so that it goes from r to q within U (seefig. 9 . If q is on "o" located in a unit m horizontal spaces to the right and n spaces upward (m and n may be negative) multiply the bond weight by

$$
\begin{equation*}
\exp \left(i m p_{x}+i: y_{y}\right) \tag{4.3}
\end{equation*}
$$

If q is an " x " multiply the bond weight by the complex conjugate of eq. (4.3), that is

$$
\begin{equation*}
\exp \left(-i m p_{x}-i n p_{y}\right) \tag{4,4}
\end{equation*}
$$

Figure 9 illustrates this. Figure 10 shows all the weights in the square lattice example after Rule 3 has been carried out.
4. Rules 1 through 3 resuit in a miniature dimer problem. Solve it by finding all coverings and their weights (see fig. 11 for the square lattice). Call the sum of the diagrams $L\left(p_{x}, p_{y}\right)$. The free energy per site, f, is

$$
\begin{equation*}
-\beta f=\frac{1}{T} \int_{-\pi}^{\pi} \frac{d p_{x}}{2 \pi} \int_{-\pi}^{\pi} \frac{d p_{y}}{2 \pi} \ln L\left(p_{x}, p_{y}\right) \tag{4.5}
\end{equation*}
$$

The factor of $\frac{l}{T}$ occurs because there are T sites per unit.
Figures 12-15 illustrate the solution for the hexangonal
Iattice dimer problem. Figure 12 shows the lattice, the bond orientations, the units of eight vertices, and the even and odd sites. The "korizontal" direction is in the x-direction; the "vertical"
direction is in the y-direction. Both these directions are also shown in Figure 12 (one must tilt the rigure a bit). There are three Boltzmann factors, z_{h}, z_{x}, and z_{y}, corresponding to the three directions in which bonds may point. The Boltzmann factors, the A-dimers, and the standard B-dimer configuration are shown in Figure 13. The folded-over mintature dimer problem is shown in Figure 14. The possible coveringsand their values are given in Figure 15. The result is eq. (4.6) with $T=8$ and

$$
\begin{gather*}
L\left(p_{x}, p_{y}\right)=\left[z_{h}^{4}+z_{x}^{4} \exp \left(-2 i p_{x}\right)+z_{y}^{4} \exp \left(2 i p_{y}\right)\right. \tag{4.6}\\
\left.+2 z_{h}^{2} z_{x}^{2} \exp \left(-i p_{x}\right)+2 z_{h}^{2} z_{y}^{2} \exp \left(i p_{y}\right)-2 z_{x}^{2} z_{y}^{2} \exp \left(i p_{y}-i p_{x}\right)\right]
\end{gather*}
$$

Graphical Rules When Condition C Fails

or

Rules When Bilinears Are of $n \eta$ and $\eta^{\dagger} \eta^{\dagger}$ Form

These rules will be exemplified by treating the square latcice dimer problem of eq. (4.2). Although Condition C is satisfied, the simplifying transformation will not be performed. Thus the action will be eq. (4.2) as it stands. Figures $6 b$ and $6 c$ show the A and B dimers.

1. Same as above.
2. Same as ed̀ove.
3. Draw two copies of U (see fig. 16). Call them U_{1} and U_{2} For (a) type bonds going from r to q draw two lines: one from r in U_{1} to q in U_{2} and one from r in U_{2} to q in U_{1}
(see fig. 17). For $\eta \eta$ dimers (i.e. A-dimers) of (b) type originating at an r in U and terminating at a q in another unit, again draw two lines. First draw one from r in U_{1} to q in U_{2} and multiply its weight by $\exp \left(-i m p_{x}-i n p_{y}\right)$, then draw one from x in U_{2} to q in U_{1} and multiply its weight by $\exp \left(i n p_{x}+i n p_{y}\right)$ (see fig. 18). For $\eta^{\dagger} \eta^{\dagger}$ dimers (i.e. B-dimers) do the same as for ηr_{1} dimers but multiply weights by the complex conjugated phase factors of the $\eta \eta$ case (see fig. 18). In all cases, if bonds are oriented from r to q they renain so, regardless of whether they go from U_{1} to U_{2} or U_{2} to U_{1}. Figure 19 shows the resulting weights for the square lattice.
4. Solve the miniature dimer problem (see fig. 20) and call the result $L\left(p_{x}, p_{y}\right)$. The free energy per unit site is

$$
-\beta f=\frac{1}{2 T} \int_{-\pi}^{\pi} \frac{d p_{x}}{2 \pi} \int_{-\pi}^{\pi} \frac{d p_{y}}{2 \pi} \text { \&n } L\left(p_{x}, p_{y}\right) \cdot \quad \text { (4.7) }
$$

Graphical Rules For A General Pseudo-Free Theory

In general, there will be η^{\dagger}, $\eta_{i} \eta$, and $\eta^{\dagger} \eta^{\dagger}$ products. Two copies, U_{1} and U_{2}, of U are to be drawn. Follow the second set of rules, $1,2,3$, for $\eta \eta$ and $\eta^{\dagger} \eta^{\dagger}$ products. For $\eta \eta^{\dagger}$ terms use rule 3 of the first set for the U_{1} copy of U but for U_{2} use complex conjugated phase factors. Finally, use eq. (4.7) and rule 4. Figures 3 and 4 illustrate this for the action given in eq. (I. 4.4).

V. ANTICOMMUTING VARIABLE CORRELATIONS

This section will compute the anticomuting variable correlations (or "propagators") for the free fermion model [eq. (I. 4bt)] The configurations and their weights were given in fig. I. II. In addition, there are Z_{h} and z_{v} Boltamann factors for each unit of horizontal and vertical Bloch wall.

The correlation functions will first be calculated in momentum space and then in coordinate space. It will be done graphically. The variables s and t will be used instead of p_{x} and p_{y}. The two are related by eq. (2.2).

Consider $\left\langle a_{s t}^{h} s_{s t}^{h^{t}}\right\rangle$. The operator $a_{s t}^{h} a_{s t}^{h^{\dagger}}$ places a dimer between the " 0 " and " x " at the horizontal (s, t) site. Unlike $\exp \left(a_{s t}^{h} a_{s t}^{h}\right)$, however, one must use it. Therefore, $Z\left(a_{s t}^{h} a_{s t}^{h^{\dagger}}\right)$ is related to the miriatore dimer problem (MDP) of fig. 3, where one inserts a "superbond" and erases all other bonds which connect to the (s, t) horizontal sites. The result is the modified mindaure dimer problem (MMP) of fig. 21 (a) B calculate $\left\langle a_{s t}^{h} a_{s t}{ }^{\dagger}\right.$) take the value of the MDP and divids it by the value of the MDP of fig. 3.

General Rules For Calculating Momentum Space

Correlation Functions

1. Obtain the $M D P$ using the rules of the last section. Since s and t variables are used rewrite, p_{x} and p_{y} in terms of s and t using the correspondence of eq. (2.2). Calculate the value of the $M D P$ and call it $D(s, t) \equiv L\left(p_{x}, P_{y}\right)=I\left(\frac{2 \pi s}{2 M+1}, \frac{2 \pi t}{2 N+1}\right)$
2. Let a^{\ddagger} and a^{2} denote two generic anticomuting variables in the MDP of rule 1. To calculate $\left\langle a^{1} a^{2}\right.$) draw a superbond from 1 to 2 and assign it unit weight. Erase am bonds involving the 1 and 2 variables. This is the MDP. Call its value $N(s, t)$. Then

$$
\begin{equation*}
\left\langle a^{I} a^{2}\right\rangle=N(s, t) / D(s, t) \tag{5.1}
\end{equation*}
$$

Figures 2l-24 calculate the non-zero 〈aat; free fermion correlations, by showing first the MMP and then its coverings. In these figures, the upper left and upper right variables are respectively $a_{s t}^{v}, a_{s t}^{v^{\dagger}}$, and $a_{-s-t}^{v}, a_{-s-t}^{v^{\dagger}}$. The lower left and lower right pairs are $a_{s t}^{h}, a_{s t}^{h^{\dagger}}$, and $a_{-s-t}^{h}, a_{-s-t}^{h^{\dagger}}$. The bond weights are those of Figure 3. The superbonds, denoted by darker lines, have unit weight. Figure 25 shows the MMP's for the 〈aat) correlations which have no coverings. They have zero value. Figures 26-28 and Figures 29-31 calculate the non-zero $\langle a \mathrm{a}\rangle$ and $\left\langle a{ }^{+}{ }^{+}{ }^{+}\right.$, correlations. Finally fig. 32 shows the MMP's for the two remaining correlations which have no coverings. The tabulated results are

$$
\begin{aligned}
& \left\langle a_{s t}^{h} a_{s t}^{h^{\dagger}}\right\rangle=\left(h_{-s} v_{t} v_{-t}-a_{1} a_{3} v_{t}-a_{2} a_{4} v_{-t}\right) / D(s, t) \text { (Fig. 21), (5.2) } \\
& \left\langle a_{s t}^{v} a_{s t} v^{\dagger}\right\rangle=\left(h_{s} h_{-s} v_{-t}-a_{1} a_{3} h_{s}-a_{2} a_{4} h_{-s}\right) / D(s, t) \text { (Fig. 22), (5.3) } \\
& \left\langle a_{s t}^{h} a_{s t}^{v^{\dagger}}\right\rangle=a_{1}\left|h_{-s} v_{-t}-\left(a_{1} a_{3}+a_{2} a_{4}\right)\right| / D(s, t) \quad \text { (Fig. 23), (5.4) } \\
& \left\langle a_{s t}^{v} a_{s t}^{h^{t}}\right\rangle=a_{3}\left|h_{-s} v_{-t}-\left(a_{1} a_{3}+a_{2} a_{4}\right)\right| / D(s, t) \quad \text { (Fig. 24), (5.5) }
\end{aligned}
$$

$$
\begin{align*}
& \left\langle a_{s t^{\mathrm{t}}-\mathrm{s}-\mathrm{t}}^{\mathrm{h}}{ }^{\dagger}\right\rangle=0 \\
& \left\langle\mathrm{a}_{\mathrm{st}}^{\mathrm{h}} \mathrm{E}_{\mathrm{s}-\mathrm{t}}^{\mathrm{v}}{ }^{\dagger}\right\rangle=0 \\
& \left\langle a_{s t}^{h} t^{\mathrm{h}^{\dagger}-s-t}\right\rangle=0 \\
& \left\langle\mathrm{a}_{\mathrm{st}}^{\mathrm{v}} \mathrm{a}^{\mathrm{v}^{\dagger}-\mathrm{t}}\right)=0 \\
& \left\langle a_{s t}{ }^{h}{ }^{h}{ }_{-s-t}\right\rangle=a_{3} a_{2}\left(v_{t}-v_{-t}\right) / D(s, t) \tag{5.10}\\
& \left\langle a_{s t}^{v}{ }^{\mathrm{a}}{ }_{-s-t}^{v}\right\rangle=a_{2} a_{3}\left(h_{-s}-h_{s}\right) / D(s, t) \tag{5.31}\\
& \left\langle a_{s t}^{v}{ }^{\mathrm{a}}{ }_{-s-t}^{\mathrm{h}}\right\rangle=a_{2}\left|\left(a_{1} a_{3}+a_{2} a_{4}\right)-h_{s} v_{-t}\right| / D(s, t) \text { (Fig. 28), } \tag{5.12}\\
& \left\langle_{s_{t}}^{v}{ }^{\text {a }}{ }^{\text {ht }}{ }^{\prime}=0\right. \\
& \left\langle a_{s t^{n}}{ }^{\dagger}{ }^{n}{ }^{\dagger}{ }_{s-t}\right\rangle=a_{3} a_{4}\left(v_{t}-v_{-t}\right) / D(s, t) \tag{5.14}
\end{align*}
$$

$$
\begin{align*}
& \left.\left\langle a_{s t}^{v^{\dagger} h^{\dagger}-s-t}{ }^{\dagger}\right\rangle=a_{4} \mid\left(a_{1} a_{3}+e_{2} a_{4}\right)-h_{s}{ }^{v}-t\right\} / D(s, t) \text { (Fig. 31), } \tag{5.16}\\
& \left(\mathrm{a}_{\mathrm{st}}^{\left.\mathrm{v}^{\boldsymbol{+}} \mathrm{a}_{\mathrm{st}}^{\boldsymbol{h}}{ }^{\boldsymbol{t}}\right)=0}\right. \\
& \text { (Fig. 25(a)), (5.6) } \\
& \text { (Fig. 25(b)), (5.7) } \\
& \text { (Fig. 25(c)), (5.8) } \\
& \text { (Fig. 25(d)), (5.9) } \\
& \text { (Fig. 26), } \\
& \text { (Fig. 27), } \\
& \text { (Fig. 32(a)), (5.13) } \\
& \text { (Fig. 29), } \\
& \text { (Fig. 30), (5.15) } \\
& \text { (Fig. 32(b)), (5.17) }
\end{align*}
$$

where h_{s}, v_{t}, and $D(s, t)$ are given by eqs. (3.3) and (3.4). of course, correlations involving (s, t) and (s^{\prime}, t^{\prime}) variables vanish if neither $(s, t) \neq\left(s^{\prime}, t^{\prime}\right)$ nor $(s, t)=\left(-s^{\prime},-t^{\prime}\right)$.

To obtain coordinate space correlations, use eq. (2.1) to express η 's in terms of a 's, and then use the results of eqs. (5.3)-(5.18). The thermodynamic limit can be taken and the correlations are

$$
\begin{align*}
& \left\langle\frac{r_{\alpha \beta^{\prime}}^{\mathrm{h}} \mathbf{h}^{\prime} \beta^{\prime}}{\mathbf{\beta}^{\prime}}\right\rangle=\int_{-\pi}^{\pi} \frac{d p_{x}}{2 \pi} \int_{-\pi}^{\pi} \frac{d p_{y}}{2 \pi} \exp \left[i\left(\alpha-\alpha^{\prime}\right) p_{x}+i\left(\beta-\beta^{\prime}\right) p_{y}\right] \times \\
& {\left[h\left(-p_{x}\right) v\left(p_{y}\right) v\left(-p_{y}\right)-a_{1} a_{3} v\left(r_{z}\right)-a_{2} a_{4} v\left(-p_{y}\right)\right] / L\left(p_{x}, p_{y}\right),} \\
& \left\langle\pi_{\alpha \beta^{r} \alpha^{\prime} \beta^{\prime}}^{v}\right\rangle=\int_{-\pi}^{\pi} \frac{d p_{x}}{2 \pi} \int_{-\pi}^{\pi} \frac{d p_{y}}{2 \pi} \exp \left[i\left(\alpha-\alpha^{\dagger}\right) p_{x}+i\left(\beta-\beta^{\prime}\right) p_{y}\right] x \\
& {\left[h\left(p_{x}\right) h\left(-p_{x}\right) v\left(-p_{y}\right)-a_{1} a_{3} h\left(p_{x}\right)-a_{2} a_{4} h\left(-p_{x}\right)\right] / L\left(p_{x}, p_{y}\right) \text {, }} \\
& \left\langle\eta_{\alpha \beta^{\prime} \alpha^{\prime} \beta^{\prime}}^{n}\right\rangle=\int_{-\pi}^{\pi} \frac{d p_{x}}{2 \pi} \int_{-\pi}^{\pi} \frac{d p_{x}}{2 \pi} \exp \left[i\left(\alpha-\alpha^{\prime}\right) p_{x}+i\left(\beta-\beta^{\prime}\right) p_{y}\right] x \\
& a_{1}\left[h\left(-p_{x}\right) v\left(-p_{y}\right)-\left(a_{1} a_{3}+a_{2} a_{4}\right)\right\} / L\left(p_{x}, p_{y}\right), \tag{5.20}\\
& \left\langle\eta_{\alpha \beta^{\eta} \alpha^{\prime} \beta^{\prime}}^{v}\right\rangle=\int_{-\pi}^{\pi} \frac{d p_{x}}{2 \pi} \int_{-\pi}^{\pi} \frac{d p_{y}}{2 \pi} \exp \left[i\left(\alpha-\alpha^{\prime}\right) p_{x}+i\left(\beta-\beta^{\prime}\right) p_{y}\right] x \\
& a_{3}\left[h\left(-p_{x}\right) v\left(-p_{y}\right)-\left(a_{1} a_{3}+a_{2} a_{4}\right)\right] / L\left(p_{x}, p_{y}\right), \tag{5.21}\\
& \left\langle\eta_{\text {a的 } \eta^{h} \beta^{\prime}}^{h}\right\rangle=\int_{-\pi}^{\pi} \frac{d p_{x}}{2 \pi} \int_{-\pi}^{\pi} \frac{d p_{y}}{2 \pi} \exp \left[i\left(\alpha-\alpha^{\prime}\right) p_{x}+i\left(\beta-\beta^{\prime}\right) p_{y}\right] x \\
& a_{1} a_{2}\left[v\left(p_{y}\right)-v\left(-p_{y}\right)\right] / L\left(p_{x}, p_{y}\right), \tag{5.22}
\end{align*}
$$

$$
\begin{align*}
& \left.\left\langle\eta_{\alpha \beta^{\prime}}^{v}\right\rangle \alpha^{\prime} \beta^{\prime}\right\rangle=\int_{-\pi}^{\pi} \frac{d p_{x}}{2 \pi} \int_{-\pi}^{\pi} \frac{d p_{y}}{2 \pi} \exp \left|i\left(\alpha-\alpha^{\prime}\right) p_{x}+i\left(\beta-\beta^{\prime}\right) p_{y}\right| \times \\
& a_{2} a_{3}\left[h\left(-p_{x}\right)-h\left(p_{x}\right)\right] / L\left(p_{x}, p_{y}\right), \tag{5.23}\\
& \left\langle\eta_{\alpha \beta^{n} \alpha^{\prime} \alpha^{\prime}}^{n}\right\rangle=\int_{-\pi}^{\pi} \frac{d p_{y}}{2 \pi} \int_{-\pi}^{\pi} \frac{d p_{y}}{2 \pi} \exp \left[i\left(\alpha-\alpha^{\prime}\right) p_{x}+i\left(\beta-\beta^{\prime}\right) p_{y} \mid \times\right. \\
& a_{2}\left|\left(a_{1} a_{3}+a_{2} a_{4}\right)-h\left(p_{x}\right) v\left(-p_{y}\right)\right| / L\left(p_{x}, p_{y}\right) \text {, } \tag{5.24}\\
& \left\langle\eta_{\alpha \beta^{n} \alpha^{\prime} \beta^{\prime}}^{\mathrm{h}^{\dagger}}\right\rangle=\int_{-\pi}^{\pi} \frac{d p_{x}}{2 \pi} \int_{-\pi}^{\pi} \frac{d p_{y}}{2 \pi} \exp \left|i\left(\alpha^{\prime}-\alpha\right) p_{x}+i\left(\beta^{\prime}-\beta\right) p_{y}\right| \times \\
& a_{z^{\prime}}{ }_{4}\left[v\left(p_{y}\right)-v\left(-p_{y}\right)\right] / L\left(p_{x}, p_{y}\right), \tag{5.25}\\
& \left.\left\langle\eta_{\alpha \beta^{\eta} \alpha^{\prime} \beta^{\prime}}^{v^{\dagger} v^{\dagger}}=\int_{-\pi}^{\pi} \frac{d p_{x}}{2 \pi} \int_{-\pi}^{\pi} \frac{d p_{y}}{2 \pi} \exp \right| i\left(\alpha^{\prime}-\alpha\right) p_{x}+i\left(\beta^{\prime}-\beta\right) p_{y} \right\rvert\, x \\
& a_{1} a_{4}\left|h\left(-p_{x}\right)-h\left(p_{x}\right)\right| / L\left(p_{x}, p_{y}\right), \tag{5.26}\\
& \left\langle\eta_{\alpha \beta^{n} \mathrm{~h}^{\dagger} \beta^{\prime}}^{\mathrm{h}^{\dagger}}\right\rangle=\int_{-\pi}^{\pi} \frac{d p_{x}}{2 \pi} \int_{-\pi}^{\pi} \frac{d p_{y}}{2 \pi} \exp \left[i\left(\alpha^{\prime}-\alpha\right) p_{x}+i\left(\beta^{\prime}-\beta\right) p_{y} \mid \times\right. \\
& a_{4}\left[\left(a_{1} a_{3}+a_{2} a_{4}\right)-h\left(p_{x}\right) v\left(-p_{y}\right)\right] / L\left(p_{x}, p_{y}\right), \tag{5.27}
\end{align*}
$$

where

$$
\begin{align*}
& h\left(p_{x}\right)=b_{h}-z_{h} \exp \left(i p_{x}\right), \\
& v\left(p_{y}\right)=b_{v}-z_{v} \exp \left(i p_{y}\right), \tag{5.28}
\end{align*}
$$

and L is given by eq. (3.4). Equations (5.18), (5.19), (5.20), (5.21), (5.22), (5.23), (5.24), (5.25), (5.26), and (5.27) are respectively obtained from eqs. (5.2), (5.3), (5.4), (5.5), (5.10), (5.12), (5.12), (5.14), (5.15), and (5.16) by replacing h_{s} and v_{t}
by the corresponding momentum valued functions of eq. (5.28). The factors $\exp \left\{i\left(\alpha-\alpha^{\prime}\right) p_{\mathbf{x}} \mid\right.$ and $\left.\exp \mid i\left(\beta-\beta^{\prime}\right) p_{y}\right\}$ in eqs: (5.18)(5.24) are translation operators. Equations (5.25) - (5.27) have conjugated translation factors because daggered variables are involved. Equations (5.18) - (5.27) are the coordinate-space anticommuting variable correlation functions for the free fermion model.
VI. THE ISTNG MODEL CORRELATION FUNCTIONS

This section will calculated the correlation function of two spin variables in the same row. It will be compared to the lnown result as a check on anticomuting variable techniques. Two horizontal spins are chosen for illustrative purposes only. The approach extends to an arbitrary pair; in fact, the vacum expectation value of several $\sigma^{\prime} s$ can be computed. The only drawback is the cumbersome form of the answer: \& Pfaffian of (in general) large size. In short, everything you ever wanted to know about the Ising model is expressible as a Pfaffian.

We will need the free fermion anticomuting variable correlations [eqs. (5.18) - (5.27)]. Bond variables will be used, in which case the Ising model is related to the free fermion (or closed polygon) partition function by eqs. (I. 3.7) and (I. 3.9), when

$$
\begin{equation*}
a_{1}=a_{2}=a_{3}=a_{4}=b_{v}=b_{b}=-1 \tag{6.1}
\end{equation*}
$$

The weights of configurations are given in fig. I.11. These values must be used (as opposed to the less restrictive conditions $a_{1} a_{3}=a_{2} a_{4}=b_{v}^{2}=b_{h}^{2}=1$) because correlation functions, unlike the the partition function, need not have the same number of a_{1} and a_{3}
type corners, a_{2} and a_{4} type corners, etc. This is obvious from eqs. (5.18) - (5.27) where correlations are not simply functions of $a_{1} a_{3}, a_{2} a_{4}$, etc.

Spin variable correlation functions can be considered as partition functions on a defective lattice ${ }^{5}$). I refer the reader to reference 5, p. 248 - 257. This means that spin correlations are (up to multiplicative constants) the partition functions of Ising models with modified Bloch wall Boltzmann factors along selected paths. For example, $Z_{\text {Ising }}\left\langle\sigma_{1,0} \sigma_{m+1,0}\right\rangle$ is z_{h}^{m} times the Ising model with the usual z_{h} and z_{v} Boltzmann factors for all Bloch walls except for the horizontal ones between (1,0) and ($m+1,0$) where $z_{h_{h}}^{-1}$ is the Boltzmann factor. This defective lattice partition function is obtained by replacing

$$
\begin{aligned}
& \exp \left(\sum_{\alpha=1}^{m} z_{h^{n}}^{n_{\alpha 0}}{ }^{\dagger} r_{\alpha+10}^{h}\right) \text { by } \exp \left[\sum_{\alpha=1}^{m} z_{h} n_{\alpha \alpha 0}^{h^{\dagger}} \eta_{\alpha+1}^{h} 0^{+} \sum_{\alpha=1}^{m}\left(z_{h}^{-1}-z_{h}\right) \eta_{\alpha 0}^{h^{\dagger}} \eta_{\alpha+1}^{h} 0\right]
\end{aligned}
$$

Equation (6.2) typifies how spin variable correlations are related to anticomuting variable correlations. Equation (6.2) can be generalized to the case when the left hand side is the vacuum expectation value of several $\sigma^{\prime} s$.

For pseudo-free theories, the following formulas are useful:

$$
\begin{equation*}
\left\langle\eta_{1} \eta_{2} \cdots \eta_{m}\right\rangle=\operatorname{Pf}_{\mathrm{ij}} \text { (for } m \text { even) } \tag{6.3}
\end{equation*}
$$

where

$$
\begin{equation*}
M_{i j}=\left\langle\eta_{i} \eta_{j}\right\rangle \tag{6.4}
\end{equation*}
$$

If $\left\langle\eta_{i} \eta_{j}{ }^{j}=\left\langle\eta_{i}^{\dagger} \eta_{j}^{\dagger}\right\rangle=0\right.$, then

$$
\begin{equation*}
\left\langle\eta_{1}^{\dagger} \eta_{1} \eta_{2}^{\dagger} \eta_{2} \cdots \eta_{m}^{\dagger} \eta_{m}\right\rangle=\operatorname{det} M_{i j}, \tag{6.5}
\end{equation*}
$$

where

$$
\begin{equation*}
M_{i j}=\left\langle\eta_{i}^{\dagger} \eta_{j}\right\rangle \tag{6.6}
\end{equation*}
$$

These formulas are the anologues of Wick's expansion. In eq. (6.3) one sums over all pairings of η 's, the sign of which is determined by how many permutations are required to get the η 's in paired form.

The vacuum expectation value of an arbitrary product of spins is expressible as a linear combination of anticommuting variable correlations. These vacuum expectation values can be computed using eqs. (5.18) - (5.27) and eq. (6.3). I will demonstrate this for two horizontal spins.

for all α and β. Apply eq. (6.5) to (6.2). The z_{h} term of $\left|z_{h}+\left(1-z_{h}^{2}\right) \eta_{\alpha 0}^{h^{\dagger}} \eta_{\alpha \alpha+1}^{h} \quad\right|$ in eq. (6.2) multiplies the same factor as the term in the Wick expansion obtained by contracting
$\eta_{00}^{h^{\boldsymbol{h}}}$ with ${ }_{\eta_{\alpha \alpha+1}}^{h_{0}}$. Therefore

$$
\begin{equation*}
\left\langle\sigma_{1,0} \sigma_{m+1,0}\right\rangle=\operatorname{det} M_{i j}, \tag{6.7}
\end{equation*}
$$

where

$$
\begin{align*}
& M_{i j}=z_{h} \delta_{i j}+\left(1-z_{h}^{2}\right)\left\langle\eta_{i 0}^{h^{\dagger} h} \eta_{j+1}\right) \tag{6.8}\\
& =\int_{-\pi}^{\pi} \frac{d p_{x}}{2 \pi} \int_{-\pi}^{\pi} \frac{d p_{y}}{2 \pi} \exp \left|i p_{x}(j-i)\right| \tag{6.8}\\
& \left.\left|z_{h}-\left(1-z_{h}^{2}\right) \exp \left(i p_{x}\right)\right| \ln \left(-p_{x}\right) v\left(p_{y}\right) v\left(-p_{y}\right)-v\left(p_{y}\right)-v\left(-p_{y}\right) \mid\right\} / L\left(p_{x}, p_{y}\right) .
\end{align*}
$$

In obtaining eq. (6.8), eq. (5.18) has beer used. Equations (6.7) and (6.8) express's the correlation function of two horizontal spins as a Toeplitz determinant, as is usually done and yields the correct result ${ }^{4,5}$).

To calculate the vacuum expectation value of a product of spin variables, proceed analogously. It will be equivalent to an Using model on a defective lattice. When expressed in terms of anticommuting variables, it will result in an expression of the form
$\left.\left\langle\prod_{\sigma^{\prime}} s\right\rangle=\left(\left(c_{12}+\alpha_{12} \eta_{1} \eta_{2}\right)\left(c_{34}+d_{34} \eta_{3} \eta_{4}\right) \cdots c_{c_{2 m-1} 2 m}+d_{2 m-1} 2 m \eta_{2 m-1} \eta_{2 \pi n}\right)\right\rangle$.

In eq. (6.9) η_{i} denotes an anticommuting variable such as
 constants determined by the defective lattice. For convenience
write $d_{i+1}=d_{i} d_{i+1}$; any values of d_{i} satisfying this will do. Wick's expansion along witn eq. (6.3) tells us that eq. (6.9) is

$$
\left\langle\prod_{\left.a^{\prime} s\right\rangle}=P f M_{i j},\right.
$$

where

$$
M_{i j}= \begin{cases}d_{i} d_{j}\left(\eta_{i} \eta_{j}\right)+\delta_{i+1} j_{i} c_{i+1}, & i \text { odd } \tag{6.11}\\ d_{i} d_{j}\left(\eta_{i} \eta_{j}\right)-\delta_{i-1} j_{i-1}, & i \text { even }\end{cases}
$$

The $\langle\eta \eta\rangle$ correlations are given in eqs. (5.18) - (5.28).
In principle, e. 11 Ising model spin correlstious may be calculsted using the sbove nethod. The reason they result in such cumbersome expressions is the following: The variables which solve The Ising model are the r_{l} 's . They might be celled the mathematical variables because they represent it as a pseudo-free field theory. Correlation functions of anticommuting variables are simple to compute. Contrast this with the spin variables. They are the physical variables. They are, however, complicated functions of the mathematical variables, the η 's, which means that spin variable computations result in cumbersome expressions. In conclusion, there are two types of variables, spin variables which have a simple physical interpretation but are mathematically awkward to work with and η variables wich do not bave as simple a physical interpretation but are easy to work with mathematicelly.

VII. SLDANARY

Here is a summary of these first two papers. The focus of attention was solvable two-dimensional statistical mechanics models, in particular, the Ising model, the free-fermion model, and the close-packed dimer problems. The partition functions were expressed as integrals over anticommuting variables. In this form they resembled fermionic field theories. The solvable models had quadratic actions, which were computed by using iree field theory techniques. More importantly, a series of graphical rules were derived whict allowed one to compute partition functions and anticommuting variable correlation functions by solving miniature dimer problems. This provided a quick and simple graphicel calculational approach. Many models can be solved by drawing a few diagrams. Finally, I showed bow to calculate the vacuum expectatior value of an arbitrary number of Ising spin variables.

For the most part, there are no new results. What has been gained is a powerful reorganization of old methods. Abstruse Pfaffian techniques have been rewritten as a set of simple graphical rules so that calculations are straightforward and systematic. The Grassmann integral has formulated the problem in terms of a field theory where powerful field theory methods have been applisa.

These first two papers have dealt with solvalle models. One need only add a term,

$$
\begin{equation*}
\sum_{\alpha \beta} \Delta \eta_{\alpha \beta \beta}^{h} h_{\alpha \beta^{n}}^{h^{\dagger}}{ }_{c \beta}^{v} \eta_{\alpha \beta}^{v^{t}}, \tag{7.1}
\end{equation*}
$$

to the free-fermion action of eq. (I. 4.4) to break the free-fermion constraint and obtain the general eight vertex model ${ }^{8}$). This model is unsolved. It is an interacting field theory. The approximation methods used for interacting field theories cen be applied to it. Here is where the real power of anticomouting variables is. Most interesting statistical mechanics problems are not solvable; an example is the 3 - α Ising model ${ }^{l \boldsymbol{\imath}}$). It is important to have viable approximation schemes. Such schemes will be obtained via Grassmern integrals. Furthermore, they will be, in general, systematic and simple.

In short, these first two papers have formed a testing ground for anticommuting variable techniques. They formed a solic foundation of solvable models upon which unsolvarle models can be approached.

REFERENCES

1. S. Samuel, The Use of Anticommuting Integrals in Statistical

Mechanics I. References to equations and figures in this paper will be prefixed by a I, e.g. eq. (I. 1.1) and fig. I.l refer to equation (1.1) and fig. 1 of reference 1.
2. When this is done, some terms have the incorrect sign (those involving loops around the torus). This difficulty can be overcome by standard methods (see pages 61 to 67 of reference 4). However, in the thermodynamic limit, such configurations will be a zero meesure effect and can be ignored.
3. H. N. V. Temperley and M. E. Fisher, Pbil. Nag. 6, (1961) 1061. M. E. Fisher, Phys. Rev. 124, (2961) 1664.
4. See, for example, B. M. McCoy and T. T. Wu, The Two-Dimensional Ising Model (Harvard University Press, Cambridge, 1973).
5. See, for example, E. W. Montroll, Brandeis University Summer Institute in Theoretical Physics, 1966, edited by M. Chrétier, E. P. Gross, and S. Deser (Gordon and Breach, New York, 1968).
6. See, for example, H. S. Green and C. A. Hurst, Order-Disorder Phenomena (Interscience, New York, 1964).
7. L. Onsager, Phys. Rev. 65, (1964) 117. Textbook derivations are given in references 4,5 , and 6.
8. C. Fan and F. Y. Wu, Phys. Rev. B2, (1970) $72 j$.
9. See reference 6, Chapter 4.
10. Reference 6, Sec. 5.3.
11. P. M. : steleyn, J. Math. Phys. 4, (1963) 287. A pedagogical version is given in reference 5.
12. The technigues used here extend to drawing closed surfaces in three
dimensions. Thus, the 3-d Ising model has an interesting
interacting fermionic-like field theory representation.
S. Samuel, to be published.

Figure 1. The Mindature Dimer Problem. Figures (a) and (b) are the graphical representation of the first and second terms in $A_{s t}$ of eq. (2.4). The h_{s}, v_{t}, etz. (eq. 2.6) factors are the weights of the dimers. The sum of (a) and (b) form the mindature dimer problem of (c).

Figure ?. The Four Possible Coverings. The weights of trese diagrams are:

$$
\text { (a) }\left(v_{t} v^{v}-t\right)^{2}
$$

(b) $\left(h_{s} h_{-s}\right)^{2}$,
(c) $\left(h_{s} h_{-s} v_{t} v_{-t}\right)$,
(d) $\left(h_{s} h_{-s} v_{t} v_{-t}\right)$. The sum yields eq. (2.7).

Figure 3. The Minigture Dimer Problem for the Free-Fermion model. The upper left "o" and "x" are $a_{s t}^{v}, a_{s t}^{v^{t}}$; the lower left are $a_{s t}^{h}, a_{s t}^{h^{\dagger}}$; the upper right are $a_{-s-t}^{v}, a_{-s-t}^{v^{\dagger}}$; the lover right are $a_{-s-t}^{h}, a_{-s-t}^{h^{\dagger}}$. The weights of bor.ds are as indicated with h_{s} and v_{t} given by eq. (3.3).

Figure 4. The Possible Coverings of fig.3. The arrows are shown to aid in determining the sign [use rules of fig. (I.8) .

The values of there diegrams are (a) ($\left.h_{s} h_{-s} v_{t}{ }^{v}-t\right)$,
(b) $\left(-a_{1} a_{3} h_{s} v_{t}\right)$, (c) ($\left.-a_{1} a_{3} h_{-5}{ }^{v}-t\right)$, (d) $\left(a_{1} a_{3} a_{1} a_{3}\right)$,
(e) $\left(-a_{2} a_{4} h_{s} v_{-t}\right)$, (f) ($\left.-a_{2} a_{4} h_{-s} v_{t}\right)$, (g) ($\left.a_{1} a_{2} a_{3} a_{4}\right)$,
(h) $\left(a_{1} a_{2} a_{3} a_{4}\right)$, and (i) ($\left.a_{2} a_{4} a_{2} a_{4}\right)$.

Figure 5. The A and B Dimer perators. In (a) is a typical bond oriented from P to Q. In the action will correspond the term $\eta_{P} \eta_{Q}$ as in (b). If a standard B-dimer lies on this bond then there is a term $\eta_{Q}^{\dagger} \eta_{P}^{\dagger}$ as in (c). The A-dimers are associated with in products, whereas

B-dimers are associated with $\eta_{1}{ }^{\boldsymbol{\eta}}{ }^{\dagger}$ products.
Figure 6. Square Lattice Dimer Prohlem. Figure (a) shows the orientations which make every elementary square clockwise odd. Figure (b) represents the A-dimer operators and fig. (c) is the standard B-dimer configuration consisting of horizontal dimers.

Figure 7. The Simplifying Transformation. Condition 6 holds for the square lattice of fig. 6. After the transformation $\eta^{\dagger} \rightarrow \eta$ at even sites, the dimer operators of figs. $6 a$ and 6 b become those shown here. The B-dimers are drawn above the A -dimers.

Figure 8. Illustration of Rule 2. Figure (a) shows the (α, β) unit. There are two B -dimers and four A -dimers entirely contained in (α, β). There are eight A-dimers which connect sites in (α, β) to sites in nearby units. They occur in pairs. For example, the upper right A-dim८A, $\eta_{0 \beta}^{3} \eta_{\text {lop }+1}^{\dagger}$, has + partner, the lower right A-dimer, $\eta_{b \beta-1}^{3} \eta_{\alpha \beta}^{2 \dagger}$. Rule 2 erases one bond from each pair. Figure (b) is an example of what results
Figure 9. Rule 3 for $\eta \eta^{\dagger}$ Products. Figure (a) shows the two dimers of fig. $8 b$ which start in the (α, β) unit at sites 2 and 3 and go to the sites 1 and 4 of the $(\alpha+1, \beta)$ unit. Rule 3 says to "fold" these back into the (α, β) unit as shown in (b). Let " O " and " x " correspond to the anticommuting variables a and a^{\dagger}. Then the $a_{2}^{\dagger} a_{1}$ bond weight gets multiplied by $\exp \left(i p_{x}\right)$ whereas the $a_{3} a_{4}^{\dagger}$ weight gets multiplied by $\exp \left(-i p_{x}\right)$.

Figure 10. The Weights for the Square Lattice. Rule 3 applied to fig. 8 b results in this figure. The weights of the B-dimers remains I as indicated. The A-dimer weights have contributions from (a) type bonds as well as (b) types. When added they result in the factors $h\left(p_{x}\right)=z_{h}\left[1-\exp \left(i_{p_{x}}\right)\right], \quad v\left(p_{y}\right)=z_{v}\left[1-\exp \left(i p_{y}\right)\right]$, etc.
Figure 11. The Two Coverings of Figure 10. The value of (a) is $h\left(p_{x}\right) h\left(-p_{x}\right)=z_{h}^{2}\left(2-2 \cos p_{x}\right)$. The value of (b) is $v\left(p_{y}\right) v\left(-p_{y}\right)=z_{v}^{2}\left(2-2 \cos p_{y}\right)$. The sum of these is $L\left(p_{x}, p_{y}\right)$. When put into eq. (4.5), the free energy per site is obtaine?

Figure 12. The Hexagonal Dimer Problem. This is the rexagenal lattice. The above bond orientation make every elementary hexagon clockwise odd. The units are outlined by dotted lines. There are eight sites in pach, and (α, β) label them. This lattice satisfies Simplifying Condition C; the odd sites are denoted by larger dots. The x-direction is northeast and the y-direction is northwest as indicated.

Figure 13. The Dimer Operators. Figure (a) shows the $A-d^{2}$ ners and their weights. Oniy haif of the "external" dimers have been kept in accord with rule 3. Figure (b) shows the B-dimers. Their weights are unity. If this B configuration is chosen in every unit, then every site is covered by a B-dimer.

Figure 14. The Miniature Dimer Problem. Rule 3 applied to Figuie 13 results in this miniatare dimer problem with the indicated bond weights.

Figure 15. The Coverings of Figure 14. There are nine coverings. Their values are (a) $\left(z_{h}^{h_{4}}\right)$, (b) $\left(z_{x}^{4} \exp \left(-2 i p_{x}\right)\right)$, (c) $\left\{z_{y}^{4} \exp \left(2 i p_{y}\right)\right)$, (d) $\left(z_{h_{x}^{2}}^{2} \exp \left(-i p_{x}\right)\right)$, (e) $\left(z_{h}^{2} z_{x}^{2} \exp \left(-i p_{x}\right)\right),(f)\left(z_{h}^{2} z_{y}^{2} \exp \left(i p_{y}\right)\right)$, (B) $\left(z_{h}^{2} z_{y}^{2} \exp \left(i p_{y}\right)\right),(h)\left(-z_{x^{2}}^{2} z^{2} \exp \left(i p_{y}-i p_{x}\right)\right)$ and (i) $\left(-z_{x}^{2} z_{y}^{2} \exp \left(i p_{y}-i p_{x}\right)\right)$. The sum of these values gives the $L\left(p_{x}, p_{y}\right)$ of eq. (4.6).

Figure 16. The Two Copies. For the square lattice, U consists of four sites. Rule 3 says to draw two copies of U. These are labelled U_{1} and U_{2}. The different sites within each U_{1} have been numbered $1,2,3$, and 4 . One should think of U_{1} as representing (s, t) variables and U_{2} as representing ($-s,-t$) variables.

Figure 17. The (a)-Type Bonds. In Figure (a), there is an A-dimer from fig, 6b and a B-dimer from fig. 6c. Each of these results in two dimers, one from U_{1} to U_{2} and one from U_{2} to U_{1} as (b) inchates. The orientation remains the same, so that the A-dimer in U which goes from 4 to 3 , still goes from 4 to 3 in both cases in Figure (b).

Figure 18. The (b)-trpe Bonds. Figure (a) shows one $\eta \eta$ (b)-type bond and one $\eta_{\eta} \boldsymbol{\eta}^{\dagger}$ (b)-type bond. Although the latter does not occur in the standerd B configuration of
fig. 6e, it hes been put in here for illuatrative purposes. If U is the (α, B) unit then the two bonds go from the (α, B) unit to the $(\alpha+1, e)$ unit. Both give rige to two dimers in (b) the weights of whict. get multiplied by the indicated phase factors.

Figure 19. The Resulting Bond Weights. Figure (a) shows the resulyte A-dimers and their bond weights. Figure (0) shows the E-dimers. Their weights are all unity. Here, $h\left(p_{x}\right)=z_{h}\left[1-\exp \left(i p_{x}\right) ;\right.$ and $v\left(p_{y}\right)=z_{y}\left(1-\exp \left(i p_{y}\right)\right.$. When superimposed (a) and (b) give rise to a mimiature dimer problem.

Figure 20. The Coverings of Figure 19. There are four coverings of
Figure 19. Their values are (a) $\left[n\left(p_{x}\right) \operatorname{li}_{i}-p_{x}\right)^{\prime}$,
(b) $\left[v\left(p_{y}\right) v\left(-p_{y}\right)\right]^{2}$, (c) $\left[h\left(p_{x}\right) h\left(-p_{x}\right) v\left(p_{y}\right) v\left(-p_{y}\right) ;\right.$, and
(d) $\left[h\left(p_{x}\right) h\left(-p_{x}\right) v\left(p_{y}\right) v\left(-p_{y}\right)\right]$.

Figure 21. The $\left\langle a_{s t}^{h} A_{s t}^{h^{\dagger}}\right\rangle$ correlation. Figure (a) is the MMDP. Figures (b), (c), and (d) are the coverings. Their values are (b) ($h_{-s} v_{t}{ }_{-t}$), (c) ($\left.-a_{1} a_{3} v_{t}\right)$, and (d) (- $a_{2} a_{4} v_{-t}$).

Figures (b), (c), and (d) are the coverings. Their values are (b) ($h_{S^{h}-s^{v}-t}$), (c) (- $a_{1} a_{3} h_{s}$), and (d) (- $a_{2} A_{4} h_{-s}$)
 (b), (c) and (d) are the coverings. Their vaiues are (b) (- $a_{1} a_{2} a_{4}$), (c) ($-a_{1} a_{1} a_{3}$), and (d) ($\left.a_{1} h_{-5}{ }^{v}-t\right)$.
Figure 24. The $\left\langle a_{s t}^{v}{ }_{s t}{ }^{\text {ht }}\right\rangle$ correlation. Figure (a) is the MMD. Figures (b), (c), and (d) are the coverings. Their vilues are (b) ($-a_{2} a_{3} a_{4}$), (c) $\left(-a_{1} a_{3} a_{3}\right)$, and (d) $\left(a_{3} h_{-s}{ }^{v}-t\right)$.

Figure 2". The zero (ait) correlations. Figures (a), (b), (c),
 $\left\langle a_{s t}^{b} a_{-s-t}^{n^{\dagger}}\right\rangle$, and $\left\langle a_{s t}^{v} a_{-s-t}^{v^{t}}\right\rangle$ correlations. None of these MDP': have any coverings.
 Figures (b) and (c) are the two coverings. Their values are
(b) ($\left.\varepsilon_{1} a_{2} v_{t}\right)$ and (c) (- $\left.a_{2} a_{2} v_{-t}\right)$.

Figure \cdots. The $\left\langle a_{s t}{ }^{\mathrm{a}}{ }^{\mathrm{v}}\right.$-st, correlation. Figure (a) is the MMDP. Figures (b) and (c) are the two coverings. Their values are (b) $\left(-a_{2} a_{3} h_{s}\right)$ and (c) $\left(a_{2} a_{3} h_{-s}\right)$.
 Figures (b), (c), and (d) are the coverings. Their values are (b) ($\left.a_{2} a_{2} a_{4}\right)$, (c) ($\left.a_{1} a_{2} a_{3}\right)$, and (d) (- $\left.a_{2} h_{s} v_{-c}\right)$
 Figures (b) and (c) are the coverings. Their values are (b) $\left(a_{3} a_{4} v_{t}\right)$ and (c) ($\left.-a_{3} a_{4} v_{-t}\right)$.
 Figures (b) and (c) are the coverings. Their values are (b) ($\left.a_{1} a_{4} h_{-s}\right)$ and (c) ($\left.-a_{1} a_{4} h_{s}\right)$.

Figure 31. The $\left\langle a_{s t^{v}-s-t}^{a^{n} \dagger}\right.$ 〉 correlation. Figure (a) is the MNDP. Figures (b), (c), and, (d) are the coverings. Their values are (b) $\left(a_{2} a_{4} a_{4}\right)$, (c) $\left(a_{1} a_{3} a_{4}\right)$, and (d) ($\left.-a_{4} h_{6} v_{-t}\right)$.
 and (b) are the MMDP's. Neither has a covering

$0 \rightarrow 0$

XBL7810-11598
$\boxed{6}$

(a)

(d)

(g)

(b)

(h)

(i)

Figure $7 \quad \times$ BL7810-1159

Figure : 0
XBL7810-11582

(a)

(b)

Figure 11

XBL7810-6619

Figure 14

(a)

(b)

(e)

(h)

Figure 15

XBL7810-11584

Figure 16

Figure 17
XBL7810-11596

XBL7810-6617
Figure 20

～～～

6_{6}^{6} ゆ
${ }_{2}{ }^{\overline{9}}$

ㅇ
C^{∞}
$\underset{x}{9}$ Figure 22

a

$\underset{x}{9}$

-

ω

Figure 23

(b)

(a)

XBL7810-6616

Figure 25

(a)

(b)

Figure 27

(c)

(o)

(b)

(c)
Figure 28

(d)
XBL7810-115日6

(a)

(b)

Figure 29

(c)
xBL7810-11587

XBL78IO-6612

Figure 32

CHAPTER III

THE PSEUDO-FREE 128 VERTEX MODEL

INTRODUCTION

Two fundanental papers (Samuel 1978 a, b) (to be referred to as I and II) have recently developed a new approach to attacking Ising-like spin models and ferroelectric systems. This paper will use the new methods to solve a new model called the pseudo-free 128 vertex model.

An enormous number of statistical ménanics problems have graphical representations. This means that the partiqion function is a sum over graphical configurations apzropriately weighted by Boltzmann factors. Papers I and II show that it is sometimes possible to find a lattice fermonic-like field theory which reproduces the graphical configurations with the correct weights. The field theory is written in path integral form. The path integral for fermionic systems is an anticommuving variable one. Anticommuting variables provide a powerful new approach to statistical mechanics problems. References I and $I I$ were devoted to developing their application to interesting systems. These two papers were pedagogical. They reviewed the theory of anticommuting variables and developed ways of expressing partition funcrions in terms of them. Graphical methods were introduced in II that quickly calculate partition functions and anticommuting variable correlation functions. A whole class of solvable models were resolved using the new methods as a check that they did indeed work.

This paper is concerned with the pseudo-free 128 vertex model. It has 32 free parameters and encompasses a wide range of systems. A close relative is the $128+8$ pseudo-free model. It is
even more general with 40 parameters. It is also solved in this paper.
Papers I and II systematically discussed the anticomuting variable techniques. For this reason few details of the 128 vertex model calculations are given. The model and the results are simply presented. How to overcome various difficulties such as the sign problems, how to get vertex weight factors, etc. are straight forward. It is suggested that the reader consult references I and II.

Section II gives a brief description of the pseudo-free 128 vertex model, Sec. III calculates its partition function, and Sec IV treats the $128+8$ pseudo-free vertex model. Finally Appendix A discusses the minus sign problem due to anticommuting variable reorderinqs.

It should be mentioned that, in principle, these models can be solved using the Pfaffian methods. As noted in reference I, the inteqral over a quadratic action is always a Pfaffian. The anticomuting variables have the advantage of easily determining minus sign factors, of systematically organizing algebra, and of establishing directly a connection with field theory. References to Pfaffian methods can be found in I \& II.

II THE MODEL
Ising models are, in general, related to closed polygon partition functions (CPPF's) where sides may overlap but cannot intersect. In such a GPPF, one sums over closed polygons weighting the sides by "Bloch wall" Boltzmann factors. The two-dimensional Ising model thus has such a representationt. The Ising model is not
the most general model which is easily solvable. The corners of polygons may also be weighted, resulting in the so-called free-fermion model described by the action of equation (I. 4.4) whose weights are given in figure I. 11. Let $W_{(p)}$ be the weight of figure I. llp. Then, the following constraint, known as the free-fermion constraint is satisfied: $W_{(a)^{W}}{ }_{(h)}+W_{(b)^{W}(c)}=W_{(d)} W_{(f)}+W_{(e)^{W}}{ }^{W}(g)^{*}$ Thus, although the free-fermion model is not the most general eight-vercex model, it is the most general easily solvable model.

Slightly more complicated than the basic Ising model would be to include one set of diagonal next nearest neighbor interactions, Such a system is equivalent to the Ising mcdel on a triangular lattice. It is again related to a CPPF. By weighting corners as well as sides, a free-fermion generalization, known as the pseudo-free 32 vertex model (Satto and Wu 1975) is obtained. They have solved this model and discussed some of its interesting submodels and critical phenomenon.

When both next nearest neiqhbor interactions are included, the Ising model cannot be solved. Spins sit on the sites of a square lattice (fiqure la). Bonds are drawn between sites which interact (fiqure lb). The four directions inclined, horizontal, diagonal, and vertical, are respectively denoted by "i", "h", "d", and "v" as shown in figure 2. The polygons of the corresponding CPPF are drawn on the lattice of figure la using the bonds of figure 1b. The number of polygons is arbitrary. Although edges may intersect (figure 3a), they are not allowed to overlap (figure 3b). Weighting the corners of polygons results in a more general CPPF. The most general, easily solvable CPPF of this form is
the pseudo-free 128 vertex model. It is the free-fermion generalization uf the next nearest neighbor Ising model.

It has 32 parameters which may be varied independently. It is thus a very general model. For example, it includes the pseudo-free 32 vertex model, which as Sacco and Wu(1975) noted, contains interesting models as subcases. Many new models are contained in the pseudo-free 128 vertex model.

As its name implies 128 configurations can happen at a site. This is to be compared to the eight vertex model where there are only eight. Of course, the solvable pseudo-free 128 vertex model does not assign arbitrary weights to all 128 configurations, only about one fourth of these are independent. The rest are determined by "free-fermion constraints". Vertex models are related to ferroelectric systems. From this point of view the pseudo-free 128 vertex model can be considered as a very general ferroelectric model.

As discussed in references I \& II, the partition function can be written as an anticomuting variable integral over an action, A^{128}. The action consists of three pieces, $A_{\text {wall }}^{128}$, $A_{\text {corner }}^{128}$ and $A_{\text {monomer }}^{128}$ They are given by

$$
\begin{equation*}
A_{\text {monomer }}^{128}=\sum_{\alpha \beta}^{-}\left[b_{i} n_{\alpha \beta}^{i} \eta_{\alpha \beta}^{i t}+b_{h} n_{\alpha \beta}^{h} n_{\alpha \beta}^{n^{t}}+b_{d} \eta_{\alpha \beta}^{d} \eta_{\alpha \beta} a^{t}+b_{v} \eta_{\alpha \beta}^{v} \eta_{\alpha \beta}{ }^{\dagger}\right] \tag{2.3}
\end{equation*}
$$

The η 's are anticommuting variables. There are four types at each site: inclined, horizontal, diagonal, and vertical ones. In addition, there is a daggered and undagger version of each. The α and B label sites, that is, (α, β) are a site's carcesian coordinates.

The terms in (2.1: have the qraphical representation of fiqure 4. The conventions established in references I\& II are used: daggered variables and undaggered variables correspond to "x"s and "o"'s, the drection of a line entering a variable determines whether it 25 an inclined, horizontal, diagonal, or vertical type, and arrows denote the order of bilinears. The constants, z_{i}, z_{h}, z_{d}, and z_{v}, are the Bloch wall Boltmann factors. Each inclined, horızontal, diagonal, or vertical unit of wall is weighted by $\mathbf{z}_{i}, \mathbf{z}_{\mathrm{h}}$, z_{d}, or z_{v}.

In equation (2.2), S is the following set of ordered pairs:

$$
\begin{equation*}
S=\{(i, h),(i, d),(i, v),(h, d),(h, v),(d, v)\} \tag{2.4}
\end{equation*}
$$

The set, S, is used so that equation (2.2) can be written conc sely. The constants, $c_{f g}^{\ell}(\ell=1,2,3,4$ and (f, g) ES), allow corners to be weighted. Like the 2 's, their values are at one's disposal. There are 24 of them. The terms in (2.2) correspond to those of figure 5. It is useful to define

$$
\begin{align*}
& c_{g f}^{1} \equiv c_{g f}^{3}, \\
& c_{f g}^{2} \equiv-c_{g f}^{2} \\
& c_{f g}^{3} \equiv c_{g f}^{1} . \tag{2.5}\\
& c_{f g}^{4} \equiv-c_{g f}^{4}
\end{align*}
$$

for (f,g)es. Then,
where the sum is over distinct f and g among the set $\{i, h, d, v\}$.
Equation (2.3) contains the monomer terms and the remaining four free parameters, b_{i}, b_{h}, b_{d}, and b_{v}. .

In a functional integral these three actions draw poiygons; $A_{\text {wall }}^{128}$ draws the walls, $A_{\text {corner }}^{128}$ forms corners, and $A_{m o n o m e r ~ f i l l s ~}^{128}$ unfilled sites. The integral is an anticommuting variable one over the action, A_{128} :

$$
\begin{equation*}
A_{128}=A_{\text {wall }}^{128}+A_{\text {corner }}^{128}+A_{\text {monomer }}^{128} \tag{2.7}
\end{equation*}
$$

The psuedo-free 128 vertex model is a fermionic-like pseudo-free field theory.

By expanding the action, the CPPF configurations are obtained. Table 1 shows the wejghts of each vertex configuration after Bloch wall Boltzmann factors have been extracted. It turns out that the overall sign of a vertex weight is determined by the number of line intersections as figure 6 illustrates. The total weight of any
polygonal configuration is the product of table 1 vertex weights at each site times the Bloch wall Boltzmann factors, $z_{f}(f=i, h, d, v)$, for each unit of wall. The first page of table 1 has the configurations where six edges enter a site; pages two through four contain configurations with four lines entering; and page five has those where two edges enter. The two remaining configurations, those with zero or eight 2 ines entering (boxes 127 and 128), are placed at the top of page two.

One must be careful of minus signs which ressit from reordering the anticomuting variables. Appendix A proves that the overall sign of a closed non self-intersestinq polyqon is plus. The overall sign for intersecting polygons is $(-1)^{I}$, where I is the number of intersections. For intersections which occur at a vertex the minus sign factors have been included in the weights of table 1. There are, however, intersections which do not occur at a vertex (see figure 7). An additional minus sign factor must be included for each of these types of intersections.

The vertex weights are expressed in terms of the following cocfficients:

$$
\begin{align*}
& c_{e f ; g}^{1} \equiv c_{e g}^{1} c_{g f}^{1}-c_{g e_{f g}^{2} c_{f}^{4}}, \tag{2.8}\\
& c_{e f ; g}^{2} \equiv c_{e g}^{1} c_{g f}^{2}-c_{g e}^{2} c_{f g}^{1} . \tag{2.9}\\
& c_{e f ; g}^{4} \equiv c_{e g}^{4} c_{g f}^{1}-c_{g e}^{1} c_{f g}^{4}, \tag{2.10}\\
& c_{e f ; g}^{\ell} \equiv b_{g} c_{e f}^{\ell}+c_{e f ; g}^{\ell} . \tag{2.11}
\end{align*}
$$

$$
\begin{align*}
& c_{e f ; g j}^{1} \equiv c_{e g}^{1} c_{g f ; j}^{1}-c_{g e}^{2} c_{f g ; j}^{4}+c_{e j}^{1} c_{j f ; g}^{1}-c_{j e}^{2} c_{f j ; g}^{4} . \tag{2.12}\\
& c_{e f ; g j}^{2} \equiv c_{e q}^{1} c_{g f ; j}^{2}-c_{g e}^{2} c_{f g ; j}^{1}+c_{e j}^{1} c_{j f ; g}^{2}-c_{j e}^{2} c_{f j: g}^{1} . \tag{2.13}\\
& c_{e f ; g j}^{4} \equiv c_{e g}^{4} c_{g f ; j}^{1}-c_{g e}^{1} c_{f g ; j}^{4}+c_{e j}^{4} c_{j f ; g}^{l}-c_{j e}^{1} c_{f j ; g}^{4}, \tag{2.14}\\
& \bar{c}_{e f ; g j}^{\ell} \equiv c_{e f}^{\ell} \bar{F}_{g j}+b_{j} c_{e f ; g}^{\ell}+b_{g} c_{e f ; j}^{\ell}+c_{e f ; g j}^{\ell}, \tag{2.15}\\
& F_{f g} \equiv-c_{f g}^{1} c_{g f}^{l}+c_{f g}^{2} c_{g f}^{4} . \tag{2.16}\\
& \vec{F}_{f g} \equiv \mathbf{b}_{\mathbf{f}} \mathbf{b}_{\mathbf{g}}+\mathbf{F}_{\mathbf{f g}}, \tag{2.17}\\
& F_{e f y} \equiv-c_{e f}^{1} c_{f e ; g}^{1}+c_{e f}^{2} c_{f e ; g}^{4}-c_{e g}^{1} c_{g e ; f}^{1}+c_{e g}^{2} c_{g e ; f}^{4} . \tag{2.18}\\
& \bar{F}_{e f g} \equiv b_{e} b_{f} b_{g}+b_{e f f g}+b_{f} F_{e q}+b_{g} F_{e f}+F_{e f g}, \tag{2.19}\\
& F_{i h d v}=\left[-c_{i d ; h}^{l} c_{d i ; v}^{1}+c_{i d ; h}^{2} c_{d i ; v}^{4}\right. \\
& -c_{i v ; d^{\prime}}^{l} v i ; h_{1}+c_{i v ; d^{2}}^{c^{4}} \\
& -c_{i h ; v}^{l} c_{h i ; d}^{l}+c_{i h ; v_{h i!d}^{2}}^{c^{4}} \tag{2.20}\\
& -c_{i v ; h}^{l} c_{v i ; d}^{l}+c_{i v ; h}^{2} c_{v i ; d}^{4} \\
& -c_{i h ; d_{h i ; v}}^{1}+c_{i h ; d^{2}}^{c_{h i}^{4}} v^{1} \\
& \left.-c_{i d ; v}^{1} c_{d i ; h}^{1}-c_{i d_{i} v^{2}}^{c_{d i ; h}^{4}}\right] \quad .
\end{align*}
$$

In equations (2.8) - (2.19), each e, f, g, and j stands for any of the i, h, d, and v. All subscripts must be distinct. In (2.11) and (2.15) $\ell=1,2$, or 4 .

The coefficients satisfy the following sympetry properties: the $c^{2} \cdot s, c^{4} \cdot s, c^{2} \cdot s$, and $c^{-4} \cdot s$ are antisymetric in the two indices before the semicolon and symmerric in the indices after the semicolon. For examnle, $c_{e f ; g}^{2}=-c_{f e ; q}^{2}, c_{e f ; g j}^{2}=-c_{f e ; g j}^{2}=c_{e f ; j g}^{2}$ $=-c_{f e ; g j^{-}}^{2}$ The $F^{\prime} s$ and $\bar{F} ' s$ are completely symmetric in their indices.

They have the following interpretation. Corners can combine to fill the anticommuting variable sites. $F_{f g}$ (respectively, $F_{\text {efg }}$ and $F_{\text {ihdv }}$ ' is the weight which results in filling the f and g (e, f, g and all) sites by using two (three and four) corners. $F_{\text {indv }}$ excludes terms in which two pairs are filled separately, i.e. there is no term proportional to $F_{i n}{ }^{F} d v^{*} \bar{F}_{f g}$ (respectively, $\bar{F}_{e f g}$) is the way $f, g(e, f, g)$ sites can be filled by using monomers and corners.

Likewise, two corners can combine to form a third. $c_{e f: g}^{l}$ (respectively, $c_{e f ; q j}^{\ell}$) is the way two (three) corners combine to form a $c_{e f}^{\ell}$ corner and in the process use up the g (g and j) variables. $\bar{c}_{e f ; g}^{\ell}$ (respectively, $\bar{c}_{e f ; g j}^{\ell}$) is the way a $c_{e f}^{\ell}$ corner can be forred, in which g (g and $j)$ sites get filled, by using both monomers and corners.

All the definitions of functions in table 1 have been supplied except for the weight, w_{127}, of box 127 . It is

$$
\begin{align*}
w_{127} & =\bar{F}_{i h d v} \equiv\left(b_{i} b_{h} b_{v} b_{d}\right)+\left(b_{i} b_{h} F_{d v}+b_{d} b_{i} F_{h v}\right. \\
& \left.+b_{v} b_{i} F_{d h}+b_{d} b_{h} F_{i v}+b_{v} b_{h} F_{i d}+b_{v} b_{d} F_{i h}\right) \\
& +\left(b_{i} F_{h d v}+b_{h} F_{i d v}+b_{d} F_{i v h}+b_{v} F_{i d h}\right) \tag{2.21}\\
& \left.+\left(F_{i h} F_{d v}+F_{i d} F_{h v}+F_{i v} F_{d h}\right)+\left(F_{i h d v}\right)\right] .
\end{align*}
$$

Table 1 along with figure 7, essentially defines the model.

II THE SOLUTION

The partition function can be related to a miniature dimer problem using the methods developed in II. If one, then, interchanges dagger and undaggered variables for (-s, $-t$) variables, a determinant is obtained.

Define

$$
\begin{align*}
i\left(p_{x}, p_{y}\right) & =b_{i}-z_{i} \exp \left(i p_{x}-i p_{y}\right), \\
h\left(p_{x}\right) & =b_{h}-z_{h} \exp \left(i p_{x}\right), \\
d\left(p_{x}, p_{y}\right) & =b_{d}-z_{d} \exp \left(i p_{x}+i p_{y}\right), \\
v\left(p_{y}\right) & =b_{v}-z_{v} \exp \left(i p_{y}\right) .
\end{align*}
$$

Let D be the following 8×8 diagonal matrix:

Let c^{1}, c^{2}, and c^{4} be the following 4×4 arrays of numbers:

$$
\begin{align*}
& c^{1}=\left(\begin{array}{llll}
0 & c_{i h}^{1} & c_{i d}^{1} & c_{i v}^{1} \\
c_{h i}^{1} & 0 & c_{h d}^{1} & c_{h v}^{1} \\
c_{d i}^{1} & c_{d h}^{1} & 0 & c_{d v}^{1} \\
c_{v i}^{1} & c_{v h}^{1} & c_{v h}^{1} & 0
\end{array}\right) \tag{3.3}\\
& c^{2}=\left(\begin{array}{cccc}
0 & c_{i h}^{2} & c_{i d}^{2} & c_{i v}^{2} \\
c_{h i}^{2} & 0 & c_{h d}^{2} & c_{h v}^{2} \\
c_{d i}^{2} & c_{d h}^{2} & 0 & c_{d v}^{2} \\
c_{v i}^{2} & c_{v h}^{2} & c_{v d}^{2} & 0
\end{array}\right) \tag{3.4}
\end{align*}
$$

$$
c^{4}=\left(\begin{array}{cccc}
0 & c_{i h}^{4} & c_{i d}^{4} & c_{i v}^{4} \tag{3.5}\\
c_{h i}^{4} & 0 & c_{h d}^{4} & c_{h v}^{4} \\
c_{d i}^{4} & c_{d h}^{4} & 0 & c_{d v}^{4} \\
c_{v i}^{4} & c_{v h}^{4} & c_{v d}^{4} & 0
\end{array}\right)
$$

Let $\left[c^{l}\right]^{t}$ denote the 4×4 matrix which is the transpose of c^{l}. Define the 8×8 matrix, $M\left(P_{x}, P_{y}\right)$, by

$$
M\left(p_{x}, p_{y}\right)=D\left(p_{x}, p_{y}\right)+\left(\begin{array}{cc}
-\left[c^{1}\right] t & {\left[c^{4}\right]} \tag{3.6}\\
{\left[c^{2}\right]} & {\left[c^{1}\right]}
\end{array}\right)
$$

and set

$$
\begin{equation*}
L\left(P_{x}, P_{y}\right)=\operatorname{Det} M\left(P_{x}, P_{y}\right) \tag{3.7}
\end{equation*}
$$

where bet stands for the determinant. The partition function for the sseudo-free 128 vertex model, Z_{128}, in the thermodynamic limit, is

$$
\begin{equation*}
z_{128}=\exp \left[T \frac{1}{2} \int_{-\pi}^{\pi} \frac{d p_{x}}{2 \pi} \int_{-\pi}^{\pi} \frac{d p_{y}}{2 \pi} \ln L\left(p_{x}, p_{y}\right)\right] \tag{3.8}
\end{equation*}
$$

Where T is the total number of sites. The free energy per site, ${ }^{f}{ }_{128}$, is

$$
-\beta f_{128}=\frac{1}{2} \int_{-\pi}^{\pi} \frac{d p_{x}}{2 \pi} \int_{-\pi}^{\pi} \frac{d p_{y}}{2 \pi} \ln L\left(p_{x}, P_{y}\right),(3.9)
$$

where B is the inverse temperature.
For particular models where the z 's, c's, and b's take on certain values, the determinant in (3.7) can be evaluated by using computers. One can then obtain the free energy by using (3.9). Other physically interesting quantities such as the energy per site and the specific heat can be obtained by taking derivatives with respect B .

IV THE 128 + 8 PSEUDO-FREE VERTEX MODEL
Closely related to the pseudo-free 128 vertex model is the $128+8$ pseudo-free vertex model. Append to the lattice of figure 1 the points where inclined and diagonal bonds cross, that is, sites with half-integer cartesian coordinates. Fiqure Ba shows the original sites (the round ones) and the new half-integer sites (the square ones). The terms, round and square, or, integer and half-integer, will be used to distinguish the two types of sites. For round sites, bonds are drawn to the four nearest neighbor round sites and the nearest neighbor square sites, but, for square sites, bonds are drawn only to the four nearest neighbor round sites (figure 8 b). What is the most general easily solvable closed polygon partition function which can be dzawn of the lattice of figure Bb ? The answer is the $128+8$ pseudo-free vertex model. This CPPF is
required to have properties similar to the 128 vertex model: any number of polygons are allowed; they must be drawn on the lattice of figure 8 b , sides can intersect but cannot overlap; and the corners and sides are weighted by various factors. This CPPF is generated by using an anticommuting variable irtegral over an action, $\mathrm{A}_{128+8^{\circ}}$. The action again consists of three pieces: one that draws the walls, $A_{\text {wall }}^{128+8}$; one that forms corner, $A_{\text {corner }}^{128+8}$ and one that fills unfilled enticommuting variable sites, $A_{\text {monomer }}^{128+8}$.

$$
\begin{aligned}
& A_{\text {wall }}^{128+\beta}=\sum_{\alpha \beta}\left[z_{d}{ }_{d} n_{\alpha \beta}^{d^{\dagger}} n_{\alpha+\frac{1}{2} \beta+\zeta}^{d}+z_{d}^{-}{ }_{n} n_{\alpha+1, \beta+4}^{a^{\dagger}} n_{\alpha+1 \beta+1}^{d}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.z_{v} \mathbf{n}_{\alpha \beta}^{\mathbf{v}^{\dagger} \eta_{\alpha \beta+1}}\right] \text {. }
\end{aligned}
$$

The z_{h} and z_{v} wall operators are shown in figure 4, while the $z_{i}^{\prime}, z_{i}^{\prime \prime}$. $z_{d}^{\prime}, z_{d}^{\prime-}$ wall operators are shown in figure 9. The weights of the two different kinds of diagonal bonds have been chosen independently; hence the two parameters z_{d}^{\prime} and $\mathbf{z}_{\mathbf{d}}{ }^{\circ}$. The same goes for inclined bonds.

The corner action consists of a piece, Acorner, identical to (2.2), and a piece that forms corners at square sites:

$$
\begin{aligned}
& A_{\text {corner }}^{128+8}=A_{\text {corner }}^{128}+A_{\text {corner }}^{8},
\end{aligned}
$$

The round corner operators are shown in figure 5, while the square corner ones are shown in figure 10.

Finally, the monomer action consists of a piéce, $A_{\text {monomer }}^{128}$ which fills round anticomuting variable sites, and a piece which fills square sites:

$$
A_{\text {monomer }}^{128+8}=A_{\text {monomer }}^{128}+A_{\text {monomer }}^{8}
$$

where $A_{\text {monomer }}^{128}$ is given in (2.3).
At round sites there are four kinds of anticomuting variables: inclined, horizontal, diagonal, and vertical, whereas at square sites there are only two kinds: inclined and diagonal.

The result is a vertex model with two kinds of vertices: square and round. The weights of the round vertices are the same as for the pseudo-free 128 vertex model and are given in table ${ }^{1}$. The weights of the square vertices are the same as the pseudo-free tight vertex model (i.e. free-fermion model) and are given in table 2. All wall
weights have been extracted, so that the total weight is the vertex weights times the wall weights. If $m_{i}=m_{d}=1$ and $c^{1}=c^{2}=c^{3}=$ $c^{4}=0$, the pseudo-free 128 vertex model is obtained along with the minus sign factor of figure 7.

In Appendix A, it is proven that non self-intersecting polygons have no overall minus signs due to reorderings of anticommuting variables. For intersecting polygons, a (-1) results for each intersection. These minus sign factors have been absorbed into the weights of tables 1 and 2.

The $128+8$ pseudo-free model has 40 parameters. The anticommuting variable integrals over square sites can be performed since they do not couple to each other. The result is

$$
\begin{equation*}
+z_{i}^{\prime} c_{z_{d}^{\prime}}^{\prime} n_{\alpha \beta+1}^{i} n_{\alpha+1 \beta+1}^{d}+z_{d}^{\prime} c^{2} z_{i}^{-} \eta_{\alpha \beta}^{d^{\dagger} \eta_{\alpha \beta+1}^{i}}+z_{d}^{\prime} c^{3} z_{i}^{\sim} \eta_{\alpha \beta}^{d^{\dagger} \eta_{\alpha+1 \beta}^{i}} \tag{4.4}
\end{equation*}
$$

which can be written as

$$
\begin{aligned}
& \mathbf{f}^{T} \exp \left[\sum _ { \alpha \beta } \left({ }_{d} n^{n^{d}}{ }_{\alpha \beta}^{\dagger} n_{\alpha+1 \beta+1}^{d}+z_{i} n_{\alpha \beta+1}^{i^{\dagger}}{ }^{\boldsymbol{n}}{ }_{\alpha+1 \beta}^{i}\right.\right. \\
& \left.\left.+k_{i d}^{1} n_{\alpha \beta}^{i}{ }^{\dagger} n_{\alpha+1 \beta}^{d}+k_{d i}^{2} n_{\alpha \beta}^{d^{\dagger} n^{i}{ }_{\alpha \beta+1}^{\dagger}}+k_{d i}^{3} n_{\alpha \beta}^{d^{\dagger} n_{\alpha+1 \beta}^{i}}+k_{d i}^{4} n_{\alpha \beta}^{d} n_{\alpha \beta-1}^{i}\right)\right],(4.5)
\end{aligned}
$$

where T is the total number of (square) sites and

It is useful to define

$$
\begin{align*}
& k_{d i}^{1} \equiv k_{d i}^{3} \\
& k_{i d}^{2} \equiv-k_{d i}^{2} \tag{4.7}\\
& k_{i d}^{4} \equiv-k_{d i}^{4}
\end{align*}
$$

$$
\ln f=-\beta f_{12 B+B}^{0}
$$

$$
\begin{align*}
& f \equiv m_{i} m_{d}-c^{1} c^{3}-c^{2} c^{4}, \\
& z_{d} \equiv z_{d}^{\prime} z_{d}^{\prime} m_{i} / f, \\
& z_{i} \equiv z_{i}^{\prime} z_{i}^{\prime}{ }^{\prime} m_{d} / f, \\
& k_{i d}^{1} \equiv z_{i}^{\prime} z_{d}^{c} \dot{c}^{1} / f, \tag{4.6}\\
& k_{d i}^{2} \equiv z_{d}^{\prime} z_{i} c^{2} / f . \\
& k_{d i}^{3} \equiv z_{d}^{2} z_{i}^{-c^{3} / f} \text {, } \\
& k_{d i}^{4} \equiv z_{d}^{-1} z_{i}^{--c^{4} / f .}
\end{align*}
$$

The $k_{f g}^{\ell}(\ell=1,2,3$, or $4 ; f, g=i$ or $d)$ terms in (4.5) have the pictorial representation given in figure 11 . The resulting anticommuting variable action is the same as for the pseudo-free 123 vertex model except for the four $k_{f g}^{\ell}$ terms, and the fact that z_{d} and z_{i} are related to square site parameters via equation (4.6). Let $D\left(p_{x}, P_{y}\right), c^{1}, c^{2}$, and c^{4} be the same matrices as in equations (3.2), (3.3), (3.4), and (3.5), Define

$$
K^{1}\left(p_{x}\right)=\left(\left.\begin{array}{cccc}
0 & 0 & k_{i d}^{1} \exp \left(-i p_{\mathbf{x}}\right) & 0 \tag{4.8}\\
0 & 0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & & 0
\end{array} \right\rvert\,\right.
$$

$$
k^{2}\left(p_{y}\right)=\left\{\begin{array}{cccc}
0 & 0 & k_{i d}^{2} \exp \left(i p_{y}\right) & 0 \tag{4.9}\\
0 & 0 & 0 & 0 \\
k_{d i}^{2} \exp \left(-i p_{y}\right) & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Let $\left[K^{i}\left(P_{x}\right)\right]^{\dagger}$ denote the hermitian conjugate of $K^{1}\left(p_{x}\right)$, i.e. $\left[K^{1}\left(p_{x}\right)\right]^{t}=\left[K^{1}\left(-p_{x}\right)\right]^{t}$. Let

$$
\begin{align*}
& \underset{128+8}{L\left(p_{X}, p_{y}\right)}=\operatorname{Det} M\left(p_{x+8}, p_{y}\right) \quad . \tag{4.12}
\end{align*}
$$

Then, the free energy per unit site, $f_{128+8 \text {, (that is, per round }}$ and square site pair) is

$$
\begin{equation*}
-B f_{128+8}=-B f_{128+8}^{\circ}+\frac{2}{2} \int_{-\pi}^{\pi} \frac{d p_{x}}{2 \pi} \int_{\pi}^{\pi} \frac{d p_{y}}{2 \pi} \ln L_{128+8}\left(p_{x} \cdot p_{y}\right) \tag{4.13}
\end{equation*}
$$

```
where f}\mp@subsup{f}{128+8}{0}\mathrm{ is given in (4.7)
```


v CONCLUSION

Two new statistical mechanics models have been solved. They are solvable vaa the Pfaffian method althought this paper solves them using the anticommuting variables.

The next step is to determine the physics of these models, in particular, the critical phenomenon. Because of the $8 \times B$ ceterminants in equations (3.7) and (4.1?), this will be quite tedious. The use of computers to evaluate these determinants will probably be necessary. One can say, however, that there aill be multiple phase transitions with Ising-like logarithmically divergent specific heat. This is because one submodel, the pseudo-free 32 vertex model, is known to have such multiple phase transitions (Sacco and Wu 1975)

AFDENDIX A. Overall Minus Signs: The Non-Self Intersecting Polygons This Appendix will prove that there are no overall minuses created by reorderings of anticommuting variables for a non-self intersecting polygon drawn on the $128+8$ lattice of figure $8 b$. This also proves the result for the pseudo-free 32 vertex and pseudo-free 128 vertex models since any polygon drawn on their lattice can be drawn on the $128+8$ lattice and the same kinas of bilinear operators are used.

The proof is similar to that for the free-fermion model, which was given in Appendix B of I and to which the reader is referred. Extensive use will be made of the sign rules (a), (b), and (c) of
figure 8 of reference 1 . The proof proceeds via induction on the area of a polygon. Any polygon can be built from the four elementary triangles of figure 22 (see figure 13). These are the polygons of minimum ares. Figure 14 starts the induction process by proving that these have an overall pi.is sign.

As required by the sign rules, the polygon is given an orientation. Choose the starting point to be on "x". Move around the polygon and count the number of minus signs due to rules (a) and (b). When moving in the positive directions of figure 2 , no minus signs occur because "x"'s are after "o"'s and arrows point in the correct directions. When moving in the negative directions, there is a minus sign factor because "x"'s occur before "o"'s, but, in addition, there is a minus sign factor because arrows point in the wrong direction. Moving in straight lines causes no minuses. Next consider corners. There are 56 different corners; the 28 types of figures 5 and 10 are multiplied by two orientations. Figure 15 summarizes the results. The corners of figure 15 create a minus sign and all others do not. The easy way to find the overall minus sign is to count the number of figure 15 corners in an oriented polygon. If the number is odd, then the extra minus due to rule (c) makes the overall sign positive.

The elementary triangles can be attached to polygons in 24 different ways: each of the four elementary triangles can attach one side or two sides in three ways. All twenty-four are illustrated in figure 16. Each of these results in several cases depending on the neighboring structure where the triangle is joined. In total, there are 480 different cases to consider. These are all shown in figure 16. It is found that the addition of an elementary
polygon creates zero or two minus factors or removes two minus factors. This implies that the overall minus sign factor due to corners is the same as for the elementary triangles, namely minus. The number of corner minuses is odd. When combined with the rule (c) minus, the claim is proved: a non self intersecting polygon has no minus signs due to reorderings of anticommuting variables.

REFERENCES

Samuel S 1978a The Use of Anticommuting Integrals in Statistical

Mechanics I LBL preprint 8217.
Samuel S 1978 b The Use of Anticommuting Integrals in Statistical
Mecinanics II LBL preprint 8300.

Sacco J E and Wu F Y 1975 J. Phys. AB 1780.

Figure 1. The Square Lattice.

Figure 2. The Four Directions.

Figure 3. Allowed and Forbidden Configurations. The sides of polygons may intersect as in figure (a) but cannot overlap as in figure (b).

Figure 4. The Wall Operators.

Figure 5. The Twenty-Four Corner Operators.
Figure 6. Overall Minus Signs. The configurations in boxes 1,4, 30, and 128 of table 1 are reproduced here. They have been redrawn so that the intersections can be seen. If the number of intersections is even the overall sign is positive, while an odd number of intersections yields a negative sign. Boxes 1, 4, 30, and 128 have respectively one, three, zero, and six intersections; hence boxes 1 and 4 have an overall
minus sign, while boxes 30 and 128 do not.
Figure 7. Extra Minus Sign. An extra minus sign factor results when any two sides intersect between lattice sites. This figure is an example in which this happens. The weight of this polygon is the product of Bloch wall Boltzmann factors, the product of table l vertex factors, times an extra minus one: $\left[z_{i} z_{d} z_{h} z_{h}\right] \times[$ (box 105) (box 112) (box 117) (box 126)] $\times[-1]$.

Figure 8. (a) The $128+8$ Vertex Model Lattice. (b) The Bonds in the $128+8$ Vertex Model. The sites in figure la are the round ones here. In addition, sites have been added at the points with half integer cartesian corrdinates (the square sites).

Figure 9. The Diagonal and Inclined Wall Operators. A square site has bonds connecting to the four nearest neighbor round sites. This figure shows the four wall operators which produce these bonds. Each of the four have been assigned a seperate weight.

Figure 10. The Four Corner Operators at a Square Site.
Figure 11. The $k_{f g}^{\ell}$ Operators. After square site integrals have been preformed, the $128+8$ vertex model becomes the 128 vertex model with the addition of these four terms.

Figure 12. The Four Elementary Triangles of the Lattice of figure Bb .
Figure 13. Building Up a Polygon From Elementary Triangles. The polygon of figure (b) is obtained from the polygon of figure (a) by attaching the elementary triangle of figure 12b.

Figure 14. The Overall Sign of the Elementary Triangles. The sign is detemined by the sign rules of figure 8 of reference I. Begin at the x near the point, A, and proceed counterclockwise around the triangle. The minuses due to rules (α) and (b) are shown here. In each figure there are an odd number of them. In addition there is a minus due to rule (c). Thus the overall sign of each of the four elementary triangles is plus.

Figure 15. The Oriented Corners Which Create a Minus Sign. Figures (a) through (l) (respectively, figures (m) and (n)) show the round (square) vertex corners which create a minus sign because of anticommuting vari-ble reordering.

Figure 16. The 480 Cases. Here are the 480 cases which must ta considered in the induction step. Each of the 12 boxes shows two of the 24 ways of appencing an elementary triangle. Ir the left half of box one side is joined, while in the right half two siles are joined. The joining triangle is the one formed by the solid and dotted edges. Only the neighboring structure of the polygon, to which the elementary triangle is being attached, is shown. When this triangle is attached to a configuration on the left, a configuration on the right results \{see figure 17a, which is an example for box 1), and when this triangle is attached to a configuration on the right a configuration on the left results (scis sigure l7b, which is an example for boy 1 and figure 13 which is an example for box 7).

An arrow on a line indicates that when the orientation is in that direction then one of the figure 15 corners is involved and a minus factor is present. Box ? shows that the corner minus sign structure is unchanged in the joining process. Sometimes the process creates (or removes) a figure 15 corner, however another one is always created or removed at one of the two other vertices (see figure 17 c , which is, a subcase of box 6). By inspecting these boxes, corner minus sign factors are seen to be created or removed in pairs so that the overall minus sign factor is unchanged.

Figure 17. Examples of the Figure 16 Induction Step. Figure (a) is an example of going from a box l left configuration to a box 1 right configuration. Figure (b) shows a box 1 right configuration going to a box 1 left configuration. The arrows denote the location of a figure 15 corner when tranversing the polygons in a cuunterclockwise direction. In figures (a) and (b) no new figure 15 corners are created. Figure (c) is an example of a box 6 transformation where two extra figure 15 corners are created, when the polygon is oriented in the clockwise direction.

Table 1. The Weights of the Vertex Configurations of The PseudoFree 128 Vertex Model. The Bloch wall Boltzmann factors have been extracted. Tite weights are expressed directly in terms of the parameters of the action \{equations (2.1)(2.3)] or via the functions in equations (2.8)-(2.21).

Table 2. The Weights of the Square vertices in the $128+8$ Pseudo-Free Vertex Model.

XBL 792-466

Figure 2

Figure 3

$$
\xrightarrow{(\alpha, \beta)} \quad(\alpha+1, \beta)
$$

$c_{i d}^{\prime}$

$c_{i v}^{\prime}$

$C_{n o}^{\prime}$

$C_{h v}^{\prime}$

$$
C_{d i}^{2}
$$

$c^{2}{ }_{v i}$

$c^{2}{ }_{v h}$

$\mathrm{C}^{3}{ }_{\mathrm{ni}}$

$\mathrm{C}^{3}{ }_{\mathrm{di}}$

$$
\mathrm{c}^{4} \mathrm{di}^{2}
$$

$C^{3}{ }_{v i}$

$C^{3} d n$

$C^{4}{ }_{v h}$

$C^{4}{ }_{v d}$

Figure 5

XBL 792-470

Figure 7

XBL 792-471

xBL792-472

Figure 9

$$
\text { - } C_{x}^{0}{ }_{x}^{m}
$$

Figure 12

(a)

Figure 13

(c)

Figure 14

(b)

(a)

da

Figure 16

XEL 792-477
Figure 17

	$\begin{array}{lll} 8 & & \ldots \\ & \cdots \\ & -c_{d h}^{4} \end{array}$	${ }^{15} \begin{aligned} & V / 2 \\ & \\ & c_{i d}^{\prime} \end{aligned}$	
$\begin{aligned} & 2 \ddots \\ & \therefore 1 \\ & c_{\mathrm{di}}^{4} \end{aligned}$	9		
	$\left\lvert\, \begin{array}{ll} 10 \\ & \ldots \\ -C_{i n}^{1} \\ & \\ \hline \end{array}\right.$		${ }^{24} \frac{V}{} \begin{aligned} & \\ & \\ & \\ & \\ & c_{d i}^{2} \end{aligned}$
		18 $-C_{v d}^{3}$	25 $-c_{v i}^{2}$
	${ }^{12} . . .$	$\underbrace{\square}_{\substack{19 \\-c_{i v}^{1}}}$	
6 $C_{d i}^{3}$	13	${ }^{20} \underset{\substack{20 \\ c}}{\substack{1 \\ c_{n v}}}$	${ }^{27} \frac{\vdots}{\substack{27 \\ c_{v h}^{2}}}$

Table 1

127 W_{127}	35	
128		$\begin{array}{\|cc} 44 & \ddots L \\ & \therefore \ddots \\ & \overline{\mathrm{C}}_{\mathrm{vd} ; \mathrm{i}}^{4} \end{array}$
	$\begin{array}{\|cc:} 37 & \ddots \vdots \\ & \ddots \\ & \text { C }_{\text {hi;v }}^{4} \end{array}$	
$\begin{array}{ll} 30 & \ddots \\ & \therefore \\ & \therefore \\ & \overline{\mathrm{C}}_{\mathrm{dh}} \mathbf{4} \mathrm{i} \end{array}$		
$31 \quad \begin{array}{lll} & \ddots \\ & & \ddots \\ & \\ & \overline{\mathrm{C}}_{\mathrm{di} \mathrm{i}}\end{array}$		$47 \quad \begin{gathered} \ddots \\ \hdashline \dot{\bar{C}}_{\text {di;v }}^{4} \end{gathered}$
$\begin{array}{\|ll\|l} 32 & \ddots & \therefore \\ & \ddots & \\ & \overline{\mathrm{C}}_{\text {hi;d }}^{4} \end{array}$		
	41	49\ddots \therefore $-\bar{F}_{d i}$

X8L 792-461
Table 1 (Continued)

XBL 792-463
Table 1 (Continued)

XBL 792-462

Table 1 (Continued)

		$\left\lvert\, \begin{array}{ccc} 113 & \ddots & \vdots \\ & \ddots & \vdots \\ & \overline{\mathrm{C}}_{\mathrm{t}: 5: \%}^{\prime} \end{array}\right.$	
			$\begin{array}{\|c} 121 \\ \\ \\ \ddots \\ \\ \vdots \\ \overline{\mathrm{C}}_{\text {hi; dv }}^{4} \end{array}$
$\begin{gathered} 103 \quad \vdots \\ \hdashline \vdots \\ \overline{\mathrm{C}}_{\mathrm{in} ; \mathrm{dv}} \end{gathered}$			
		$\begin{array}{cc} 119 & \vdots \\ & \therefore \vdots \\ & \ddots \\ & \overline{\mathrm{C}}_{\mathrm{vd} ; \mathrm{ih}}^{\prime} \end{array}$	

(a)
(b)

m_{i}
(c)

m_{d}
(d)

c^{\prime}
(e)

c^{2}
(f)

c^{3}
(g)

c^{4}
(h)

-1
$\left(m_{i} m_{d}-c^{\prime} c^{3}-c^{2} c^{4}\right)$

PART II

APPLICATIONS O. STATISTICAL IIECHANICS

TO FIELD THEORY

CHAFTER IV

the grand partition function in field theory WITH APPLICATIONS TO THE SINE-GORDON THEORY

I. INTRODUC־:ION

This paper will emplcy a techuaque, known as gaussian integration, ${ }^{l}$ by wich certain ficid theories are identified with a gas of inicracting partjcies. Originally the method was used to reWrite a partition function in a fiedinineoretic way. Field theory techuiques were then used to obtain results for the statistical menhanizal sysiem. The method can also be applied to a grand partition function. ${ }^{2}$ This makes it possible to go from a thermodynamic system where purticle number is not fixed to a field theory representation, which simplifies the analysis of the thermodynamic system. The idea of this paper is to reverse the process: In some cases the analogue field theory is a relativistic one. An example is the sine-Gordon which is equivalent to a neutral Coulomb gas. 3 The vacuum expectation value of $e^{\int \mathscr{C L}}=e^{2 \lambda_{0} \int \cos B q x}$, which is a sum of vacuun bubble diagrans, is equal to the grand partition function for such a Couromb system, λ_{o} playing the role of the absolute activity and B playing the role of the inverse temperature. In these cases one can analyze the field theory by using the underlying statisticel mechanical analogue. k. owledge of the sine-Gordon will yieid information about the Coulomb plasma. Likewise, one may use the Coulomb plasma to gain information about the sine-Gordon. This i. the plan of this paper. It enables one to use one's intuition of the Coulomb plasma to obtain field theoretic results.

Some of the results of this paper have appeared in the mathematics literature. $3,4,5$ The author feels these are worth repeating since such
mathematical presentations are not accessible to most physicists. This paper stresses simple, physical, and intuitive methods of derivation.

The paper is organized as follows: Section II reviews the gaussien representation method. The system can have several different types of particles with different activities. Various interparticle potentials may also be used. The physical signiricance of the smearing of fields is discussed. Section III checks perturbatively the results of Section II. This check gives one insight into the statistical mechanical-field theoretic analogy. In particular. the Feynman diagrams have a simple physical description in terms of the underlying thermodyramic system. This correspondence is outlined in Table 1. From Section IV onward the main concern of the paper is the two dimensional sine-Gordon. Section IV introduces the sine-Gordon field theory and discusses its infrared singular nature which in the Coulomb analogue model forces strict neutrality. Section V determines the phases of the sine-Gordon. At low temperatures there is a dipole gas, whereas at high temperatures there is a plasma phase. The impact on the existence of solitons is discussed. Section VI shows how non-linear σ-model is equivalent to the sine-Gordon. In Section VII the renormalization is performed to all orders in λ_{R} and $B q^{2}$, when $B q^{2}$ is small. This shows that the theory is well defined. Other aspects of renormalization are also dealt with. In Section VIII remaining ideas are discussed, most of which depend hetvily on the Coulomb ga: analogy. Most important is the vacum structure and its effect on the theory, Charge screening and shieldiny, rractionas
charges, the effects of infrared divergences on Feynman rules, and the sine-Gordon solitons are discussed. Section $I X$ is the summary. There, the main results are simply enumerated. The paper concludes with a comment on vaculu gases as models for hedrons.

II. GAUSSIAN REPRESENTATION

The partition function for a system of interacting particles may be represented as a field theory. The technique, known as gaussien representation, is well-known in statistical mechanics. ${ }^{1,2}$ In certain cases, the resulting field theory is a relativistic field theory. These are of particular interest since it allows one to think in terms of the underlying statistical mechanical system. This association provides physical insight into the field theory which one usually does not have, thus allowing for the extraction of the interesting physical effects.

This section will revieu the gaussian representation method along with coments concerning the use of different potentials, the smearing of fields, and various other technicalities which occur in pessing from the grand partition function to the field theory. For simplicity the gaussian representation method will be first applied to a specific example: the Coulomb plasma in three dimensions. This was actually done by Polyakov ${ }^{6}$ in analyzing a three dimensional instanton confinement mechanism. His instantons were monopoles interacting via a potential whict. was Coulomb-like for large distances and mitigated for short distances. Because of the softened short distance behavior the Polyakov model has a natural renormalization prescription. This will be obvious later on. For the true Coulomb gas there is no natural renormalization and the grand pertition function will be ultraviolet singular. For the present, ignore the bad short distant behavior and any infinities which result from the use of the bare $\frac{1}{r}$ potential.

Consider the grand partition function, γ, for a plasma sontaining an arbitrary number of positive charges (ions) and negative charges (electrons) interacting via a Coulomb potential at a temperature, $\frac{1}{B}$, and having an absolute activity, λ_{0} :

$$
\begin{align*}
\eta= & \sum_{p=0}^{\infty} \frac{\lambda_{0}^{p}}{p!} \sum_{i=0}^{\infty} \frac{\lambda_{0}^{i}}{i!} \int_{V} d^{3} R_{l} \cdots d^{3} R_{p} \int_{Y} d^{3} x_{1} \cdots d^{3} x_{i} \\
& \times \exp \left\{-\frac{\beta q^{2}}{2}\left(\sum_{\ell \neq m}^{p} \frac{1}{\left|\vec{R}_{\ell}-\vec{R}_{m}\right|}+\sum_{\ell \neq m}^{i} \frac{1}{\left|\vec{x}_{\ell}-\vec{x}_{m}\right|}\right.\right. \\
& \left.\left.-\sum_{\ell=1}^{p} \sum_{m=1}^{i} \frac{1}{\left|\vec{R}_{\ell}-\vec{X}_{m}\right|}\right)\right\} \tag{2.1}
\end{align*}
$$

In equation (2.1) the charge is q on both the ion and the electron. Both species have the same activity so that although the system need not be neutral, only configurations which are nearly neutral should contribute to Z as we know from physical considerations. λ_{0} being the activity is related to the chemical potential, μ_{0}, by $\lambda_{0}=e{ }^{0}$. In Eq. (2.1) V is the volume of interest, i.e. the charges are confined to the region, V. Of course: z does not exist because of the infinity resulting when a + approaches a - . One can introduce repulsive cores; alternatively one can smear the charges a bit. The latter procedure is more natural since, as will be shown later, the smearing of charges corresponds to the smearing of fields, a practice which naturally occurs in the rigorous mathematical treatment of field theories.

Keeping track of combinatorics, (2.1) may be rewritten as

$$
\begin{align*}
y= & \sum_{n=0}^{\infty} \frac{\lambda_{0}^{n}}{n!} \sum_{q_{1}= \pm q} \cdots \sum_{q_{n} \pm q} \int_{v} a^{3} R_{1} \cdots \cdots d^{3} R_{n} \\
& \times \exp \left\{-\frac{8}{2} \sum_{\ell \neq m} \frac{q_{\ell} q_{n}}{\left|k_{l}-k_{m}\right|}\right\} . \tag{2.2}
\end{align*}
$$

Consider

$$
\begin{align*}
& W\left(R_{1}, \cdots R_{n}, q_{1}, \cdots q_{n}\right) \\
& =\frac{\int D_{X e} \int_{R^{3}}^{\frac{\nabla_{X} \cdot \nabla_{X}}{\delta_{\pi}} d^{3} R+i \beta \int_{V} \rho(R) x(R) d^{3} R}}{\iint_{X X}-8 \int_{R^{3}}^{\frac{\nabla_{X} \cdot \nabla_{X}}{8 \pi} d^{3} R}}, \tag{2.3}
\end{align*}
$$

with

$$
\begin{equation*}
\rho\left(\vec{R}_{i} ; \vec{R}_{1}, \cdots, \vec{R}_{n} ; q_{1}, \cdots, q_{n}\right)=\sum_{\ell=1}^{n} q_{\ell} \delta^{3}\left(\vec{R}^{\prime}-\vec{R}_{\ell}\right) . \tag{2.4}
\end{equation*}
$$

Equation (2.3) may be evaluated using the usual rules for gaussian runctional integrals:

$$
\begin{align*}
& W=e \\
& =e^{-\frac{B}{2} \int c(\vec{R}) \frac{1}{\mid \vec{R}-\vec{F}-1} \rho\left(\vec{R}^{-}\right)} \\
& -\frac{B}{2} \sum_{l \neq m}^{n} \frac{q_{l} q_{n}}{\left|R_{l}-\hbar_{m}\right|}-B \text { (sets energy term). } \tag{2.5}
\end{align*}
$$

The self-energy term is $-\frac{q^{2} n}{2} \frac{1}{|\vec{o}|}$ and is infinite. This infinity is made finite by smearing the charges (which is equivalent to smearing fields) or is completely eliminated by normal ordering the final lagrangian of $\mathrm{Eq} .(2.7)$ as is revealed in perturbation theory.

Notice that Eq. (2.5) contains the factor present in the integrand of Eq. (2.3). Thus, up to self energy terms,

$$
\begin{aligned}
& z=\frac{1}{N} \int D_{x e^{-\beta} \int \frac{\nabla x \cdot \nabla x}{8 \pi}}^{\sum^{\infty}} \frac{\lambda_{0}^{n}}{n!} \sum_{n=0} \cdots \sum_{q_{1}= \pm q} \\
& \times \int d^{3} R_{1} \ldots d^{3} R_{n} e \quad i \beta \sum_{z=1}^{n} x\left\langle R_{q}\right) q_{q} \\
& \text { V } \\
& =\frac{1}{N} \int D_{X e^{-\beta \int \frac{\nabla x \cdot \nabla x}{8 \pi}}}^{x}
\end{aligned}
$$

$$
\begin{equation*}
\times \sum_{n=0}^{\infty} \frac{\lambda_{0}^{n}}{n!}\left(\sum_{q_{0}= \pm q} \int d^{3}{ }_{R e}^{i \beta x(R) q_{0}}\right)^{n} \tag{2.6}
\end{equation*}
$$

or

$$
\begin{equation*}
y=\frac{2}{N} \int \delta_{x e^{-B}} \int_{\mathbb{R}^{3}}^{\frac{\nabla x \cdot \nabla_{x}}{8 \pi}}+2 \lambda_{o} \int_{v} \cos [B q x(R)] d^{3} R \tag{2.7}
\end{equation*}
$$

$-B \int \frac{\nabla x \cdot \nabla x}{8 \pi}$
where $\quad N=\iint D_{x}$ \mathbb{R}^{3}

Equation (2.7) is the fundamental gaussian representation of the grand canonical sum for a Coulomb plasma. I has been expressed as the field theoretic $\left\langle\exp \left(2 \lambda_{o} \int \cos \beta q x\right)\right\rangle$ where the bracket represents an average with respect to the free massless Euclidean functional measure in three dimensions. The corresponding lagrangian is the sine-Gordon and heave one has the result that the sine-Gordon field theory is equivalent to the Coulomb plasma.
X, in some sense, represents a cuarse-grained Coulomb patential. The equation of motion for x is

$$
\begin{equation*}
\nabla^{2} x=4 \pi\left(2 \lambda_{0} q\right) \sin B q x \tag{2.8}
\end{equation*}
$$

Let $\phi=$ ix. ϕ then satisfies

$$
\begin{equation*}
\nabla_{\phi}^{2}=-4 \pi\left(\lambda_{0} q\right)(-2 \sinh 8 q \Phi) \tag{2.9}
\end{equation*}
$$

which is tne weii-known Debye-nïiciel aquation. 7 The nebye-hückel equation is usually derived by assuming that the Coulomb potential, ϕ, satisfies $\nabla^{2} \phi(x)=-4 \pi \rho(x)$ where $\rho(x)$ is the local charge density and hence equal to a mean charge density, n_{0}, times the Boltzman factor for a plus charge to be at $x(\exp \{-8 q \phi[x])$ minus the Boltzman factor for a minus charge to be at $x(\exp (B q \phi[x]\})$. For high temperatures $\lambda_{0} q=n_{0}$ so that the Debye-Hücke2 derivation yields the same result as gaussian integration. The Debye-Hückel derivation is, at best, heuristic. For example, it is not clear why one should use the Boltzman factors, $\exp \{ \pm \beta q \phi(x)\}$, rather than the probability factors, $\exp \{ \pm \beta q \phi(x)\} /[\exp \{\beta q \phi(x)\}+\exp \{-\beta q \phi(x)\}]$. Gaussian integration eliminates this guesswork. It tells us that the correct charge density factor is $\lambda_{0} q$ when the Boltzman factor $\exp \{-B q \phi(x))-\exp \{B q \phi(x)\}$ is used.

In the above example the equation of motion of the field theory. corresponds to the Debye-Hilckel equation of the Coulomb plasma. The gaussian representation methri applies to systems interacting via arbitrary two-body potentials. Using the field theory representations of these statistical mechanical systems, one can obtain the analogue of the Debye-Hückel equation by looking at the corresponding field theory equations of motion.

The previous derivation may be generalized in several different ways. First of all, it doesn't depend on the dimension. One merely
replaces the integrals in the action by d-dimensional integrals. for example, if the integrals in equation (2.7) were replaced by d-dimensional integrals then one would obtain the Coulomb gas in d-dimensions (the interparticle Coulomb potential vould be $\frac{1}{d-2} \frac{4 \pi}{V\left(s^{d-1}\right)} \frac{q_{1} q_{2}}{r^{d-2}}$, and if one replaced the 8π factors by $2 V\left(5^{d-1}\right)$ then the interparticle potential vould be $\left.\frac{1}{d-2} \frac{q_{1} q_{2}}{r^{d-2}}\right)$. Here $V\left(S^{d-1}\right)$ is the volume of the d-1 dimensional sphere.

Secondly, one can use other potentials such as the Yukawa $\exp (-m r) / r$. Consider a potential $V\left(r, r^{-}\right)$. Let H_{o} be the inverse of V, so that $H_{0}\left(r, r^{-}\right) \equiv\langle r| H_{0}\left|r^{\circ}\right\rangle$ satisfies $\int f(r) H_{0}\left(r, r^{\circ}\right)$ $V\left(r^{*}, r^{\cdots}\right) g\left(r^{\cdots}\right) d^{3} r d^{3} r^{-} d^{3} r^{\cdots}=\int f(r) g(r) d^{3} r \quad$ (for reasonable f and g). One needs to assume that $\int f(r) H_{0}\left(r, r^{\prime}\right) f\left(r^{-}\right) d^{3} r d^{3} r^{-} \geq 0$ for all reasonable f. The partition function for particles interacting via V with activity and inverse temperature respectively A_{0} and B is

$$
\begin{equation*}
z=\sum_{n} \frac{\lambda_{o}^{n}}{n!} \int d^{3} R_{1} \cdots d^{3} R_{n} e^{-\frac{\beta}{2} \sum_{i \neq j} V\left(R_{i}, R_{j}\right)}, \tag{2.10}
\end{equation*}
$$

Which may be expressed in terms of functional integrals using the gaussian integration method:

$$
\begin{gather*}
z=\frac{J}{N} \int D_{X} e^{-\frac{B}{2} \int a^{3} r d^{3} r^{\prime} x(r) H_{o}\left(r, r^{\prime}\right) \times\left(r^{\prime}\right)} \\
\times e^{\lambda_{0} \int_{V} e^{i x(r) B_{d}{ }^{3} r}} \\
\text { where } N=\int D_{X e^{-}}^{-\frac{B}{2} \int d^{3} r d^{3} r^{\prime} x(r) H_{0}\left(r, r^{\prime}\right) \times\left(r^{\prime}\right)}
\end{gather*}
$$

For excmple, if $v=\frac{e^{-m r}}{r}, H_{0}\left(r, r^{-}\right)-\frac{1}{4 \pi} \int e^{i k \cdot\left(r-r^{-}\right)}\left(k^{2}+m^{2}\right) \frac{d^{3} k}{(2 \pi)^{3}}$
and

Lastly, one can have a gas f several particles with different charges, $q^{(1)}, q^{(2)}, \ldots \ldots, q^{(m)}$ and activities $\lambda_{0}^{(1)}, \ldots, \lambda_{0}^{(m)}$. Ia the Yukawa case one would call the q 's quanta rather than charges.
The two body potentalal would be $\frac{q_{1} q_{2}}{r}$ in the case of the Coulomb gas, $q_{1} q_{2} \frac{e^{-m r}}{r}$ in the case of a Yukawa gas, and $q_{i} q_{2} V(r)$ in the case of a general gas where $V(r)$ represents the basic potential between two positive unit quenta. The grand canonicel sum is

$$
\begin{align*}
& z=\sum_{l_{1}=0}^{\infty} \cdots \sum_{l_{m}}^{\infty} \frac{\left[\lambda_{0}^{(1)}\right]^{l_{1}}}{l_{1}!} \cdots \cdot \frac{\left[\lambda_{0}^{(m)}\right]^{\ell} m}{l_{m}!} \\
& x \int_{v} d^{3} X_{l}^{(1)} \cdots d^{3} x_{l_{1}}^{(1)} \int_{v} d^{3} x_{1}^{(2)} \ldots . d^{3} x_{l_{2}}^{(2)} \\
& \ldots \int_{v} d^{3} y_{1}^{(m)} \cdots d^{3} x_{q_{m}^{(m)}}^{(m)} e^{-B U}, \tag{2.13}
\end{align*}
$$

where ℓ_{i} is the number of the $i^{\text {th }}$ specie present, $x_{j}^{(i)}$ is the coordinate of the $j^{\text {th }}$ particle of the $i^{\text {th }}$ specie, and U is the sum of patendial energy terms between all pairs of particles:

$$
\begin{equation*}
\mathrm{v}=\frac{2}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \sum_{k=1}^{l_{i}} \sum_{\ell=1}^{\ell_{j}} q^{(i)} q^{(j)} v\left(x_{k}^{(i)}, x_{2}^{(j)}\right) \text {-self-energy } \tag{2.14}
\end{equation*}
$$

The same derivation as before works with the ρ in Eq. (2.4) replaced by

$$
\begin{equation*}
\rho(\vec{r})=\sum_{i=1}^{m} \sum_{l=1}^{\ell} q^{(i)} \delta_{\delta}^{3}\left(\vec{x}_{l}^{(i)}-\vec{r}\right) \tag{2.15}
\end{equation*}
$$

and the $\frac{\nabla() \cdot \nabla()}{4 \pi}$ replaced by $H_{0} \cdot z_{m}^{\text {becomes }}$

$$
\begin{equation*}
\psi=\frac{1}{n} \int \delta_{x e}-\frac{\beta}{2}\left(x, H_{0} x\right)+\int_{v} \sum_{i=1}^{0_{m}} \lambda_{0}^{(i)} e^{i \beta q^{(i)} x(r)} d^{3} r \tag{2.16}
\end{equation*}
$$

In particular, when $m=2, \lambda_{0}^{(1)}=\lambda_{c}^{(2)}=\lambda_{0}, q^{(1)}=-q^{(2)}=q$, and the Coulomb potential is used, Eq. (2.16) reduces to Eq. (2.7). By choosing $\lambda_{0}^{(1)}=\lambda_{0}^{+}$different from $\lambda_{0}^{(2)}=\lambda_{0}^{-}$one cen deal With a Cou'omb plasma of ions and electrons with an excess of ions (or electrons). Finally, for a neutral system of Yukawa particles with quanta + and - q one obtains

$$
\begin{equation*}
z=\frac{1}{N} \int D_{x e^{-B \int \frac{\left(\nabla x \cdot \nabla x+m^{2} x^{2}\right)}{8 \pi}}+2 \lambda_{0} \int_{V} \cos B q x}, \tag{2.17}
\end{equation*}
$$

whose underlying lagrangian is the "massive" sine-Gordon, $\mathscr{L}=\beta \frac{\nabla x \cdot \nabla x}{\delta \pi}+\beta \frac{m^{2} x^{2}}{8 \pi}-2 \lambda_{0} \cos \beta q x$. In two dimensions the massive Schwinger model at zero Coleman angle is equivalent to the massive sine-Gordon ${ }^{8}$ and hence is equivisent to a neutral Yukawa gas. ${ }^{5}$

For both Coulomb and Yukawa gases, singularities occur when opposite charges approach each other. In addition there are self-interaction infinites. The self-energy terms can be eliminated by normal ordering the potential which is equivalent to absorbing the infinity into λ_{0} as will be showa in the next section. This is rell-known to sine-Gordon theorists. The singularity resulting from plus-minus short distance interaction is not so simply eliminated. One convenient possibility is to smear the point charges. This is a reasonable procedure since point charges never exist anyway. Replace a point charge at R_{i} by a charge distribution $f\left(r-R_{i}\right)$. Hence $\int f(x) d^{3} x=1$ and $f(x)$ is peaked
about $x=0$. ρ in Eq. (2.4) vould be replaced by

$$
\begin{equation*}
\rho_{\text {smeared }}(\vec{r})=\sum_{\ell=1}^{n} q_{\ell} \rho\left(\vec{r}-\vec{n}_{\ell}\right) \tag{2.18}
\end{equation*}
$$

The iimit $f(x)+\sigma^{3}(x)$ reproduces the point charge distribution. The effect on the field thecry representation is to replace exp(iBqx(R)) by $\exp \left(i / \beta q x(\vec{r}) r(\vec{r}-\vec{k}) d^{3} r\right\} \equiv \exp \left\{1 B\left(x^{*} f\right)(\vec{R})\right\}$ so that equation (2.7) becomes

$$
\begin{equation*}
\eta_{\text {smeared }}=\frac{1}{N} \int D_{x e^{-B} \int \frac{\nabla_{x} \cdot \nabla_{v}}{8 \pi}}+2 \lambda_{o} \int_{v} \cos \theta q(x * r)(\vec{R}) d^{3} R \tag{2.19}
\end{equation*}
$$

and equation (2.16) is replaced by

This type of smearing is necessary in mathematical field theory where fields are distributions and must always be smeared with test functions. In tnese models the smearing of fiells is natural since it corresponds to the smearing of point charges. The self-energy term also becomes finite and is equal to

$$
\begin{equation*}
\frac{g^{2}}{2} \int r(\vec{r}) \frac{e^{-m|\vec{r}-\vec{r} \cdot|}}{|\vec{r}-\vec{r}-|} r\left(\vec{r}-d^{3} r d^{3}=\right. \tag{2}
\end{equation*}
$$

for the Yukawn case. The self-enerigy i: the Coulomb casc is given by Eq. (2.21) witi $m=0$ and in the \because nerai cate ic

$$
\begin{equation*}
\frac{q^{2}}{2} \int f(\vec{r}) \vee\left(\vec{r}, \vec{r}^{-}\right) f\left(\vec{r}^{-}\right) d^{3} r \cdot \dot{g}^{3} r^{2} \tag{2.22}
\end{equation*}
$$

III. PERTURBATIVE VERIFICATION

The purpose of this section is twofold. First, the formed gaussian representation $u s$ verified in perturbation theory. I: is checked to third order in λ_{0}^{3} for the Coulomb plasma modei (sineGordon field theory) in three dimensions. All orders in are resummed to give the first few terms of the grand partition function. Tnus perturbstion theory when rearranged does indeed give the grand canonical sum. The second purpose of this section is to set up a correspondence between perturbative Feynan diagrams and the statistical mechanical system. This is done in the lat ter part of this section and the results are summarized in Table 1.
<exp[22 $\left.\int \cos \beta q x\right]>$ is the sum of vacuum bubble diagrams. To obtain the Feymman rules one could rescale χ so that $S_{0}=\frac{1}{2} \int \nabla_{x} \cdot \nabla_{X} d^{3} R$, however when not rescaled $S_{0}\left\{=\int \frac{\nabla_{X} \cdot \nabla_{X}}{8 \pi} d^{3} R\right\rangle$ acts like the electrostatic energy of the system. To retain this physica? meaning the Feynman rules will be listed without χ rescaled. For bubible diagrams they are
a) Draw all topologically distinct vacuum oubbles (connected or disconnected) with vertices of an arbitrary even order (Including zero order). Order, here, refers to the number of lines attached to a vertex.
b) For each vertex associate a factor $\left(2 \lambda_{0}\right) \int_{V} d^{3} r_{i}$. i refers to the $i^{\text {th }}$ vertex.
c) For each vertex of order $2 n$ associate a factor of $\left(-\beta^{2} q^{2}\right)^{n}$.
d) For each propagator associate - factor of $\frac{1}{E} \frac{1}{\mid r_{i}-r_{j}} .9$
e) Put in a factor $\frac{1}{2!}$ for each pair of vertices connected by \& lines. See Figure $1 a$.
5) Put in a factor of $\frac{1}{(22)!!}=\frac{1}{2^{l} l!}$ for eaeh i-foid self-enerni tajpo:e. See Figure lb.
B) Put in a factor of [(order of symmetry group of eraph)!] ${ }^{-1}$.
h) The empty graph is to be included and contributes unity.

Equivalent rules for a) and g) are:
a) Draw all bubble graphs (topologically distinct or not), that is label the vertices and treat them as distinguishable.
8) Put in s factor of [number of vertices! $]^{-1}$.

The effect of the self-energy tadpoles is to renormalize λ_{0}. Any graph can be drawn as a grap: without tadpoles plus tadpoles adjoined. Consider the effect of adaing an arbitrary nunber of tadpoles to a "bare" vertex (see Figure 2). The following factor will multiply the "tadpoleless" vertes:

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left(-\beta^{2} q^{2}\right)^{n}\left(\frac{1}{n!} \frac{1}{2^{n}}\right)\left(\frac{1}{\beta|\vec{o}|}\right)^{n}=e^{-\frac{1}{2} B q^{2} \frac{1}{|\vec{o}|}} \tag{3.1}
\end{equation*}
$$

If the smeared interaction $2 \lambda_{0} \cos (B q x \star f)$ is used Eq. (3.1) becomes

$$
\begin{equation*}
e^{-\frac{1}{2} B q^{2} \int f(r) \frac{1}{\left|r-r^{-}\right|}} f\left(r^{-}\right) d^{3} r d^{3} r^{\prime} \tag{3.2}
\end{equation*}
$$

Comparing this with equations (2.5) and (2.21 vith $m=0$), one sees that the effect of tadpoles is to multifly each vertex by e^{-8} self-enered. Hence ruies b) and f) are modified to
b) For each vertex associate a factor $2 \lambda_{R} \int_{V} d^{3} r_{1}$ with λ_{R} the renormalized activity and $\lambda_{R} x \lambda_{0} e^{-i s e l f \text {-energy }}$.
f) Do not include self-energy tadpole diagrams.

Alternatively one may use $2 \lambda_{R}: \cos B q x$ as the interaction density. Normal ordering corresponds to a renormalization of A_{0}. This fact, well knom to sine-Gordon theorists, actually holds for any interaction which can be represanted in gaussian form. One can also see this in the grand canonical sum (Eq. [2.2]) vhere the self-energy terms would simply factor out to multiply λ_{0}^{n} by $e^{-B n S . E .}$, i.e. $\lambda_{0} \rightarrow \lambda_{0} e^{- \text {Bself-energy }}=\lambda_{R}$.

It will now be chocked that to order λ_{R}^{3} ihat perturbation theory reproduces the f of Eq. (2.2). ' 7 D zero'th order the empty diagrem contributes 1 and g begins with 1. The diagrams of order λ_{0} are shown in Figure 3. They contribute ${ }^{2 \lambda_{R}} \int_{V} d^{3} r^{2}=2 \lambda_{R} V$ which equals
$\sum_{q_{1}=q^{2}}{ }^{\lambda} R \int_{V} d^{3} r$. The diagrams of order λ_{R}^{2} are shown in Figure 4. They sum to

$$
\begin{aligned}
& \lambda_{R}^{i} z_{\gamma}= \\
& \frac{1}{2}\left(2 \lambda_{R}\right)^{2} \sum_{n=0}^{\infty} \frac{1}{(2 m)!}\left(-B^{2} q^{a^{\prime}}\right)^{2 n} \int_{V} d^{3} F_{i} d^{3} R_{2} \frac{:}{\left.\left(b^{n}\right)_{i}-i, i\right)^{2}:}
\end{aligned}
$$

The $\frac{1}{2}$ factor multiplying the expression comes frow the symmetry fector of rule g. (3.3) equels

$$
\begin{equation*}
\frac{\lambda_{k}^{2}}{2!} \sum_{q_{1}= \pm q} \sum_{q_{2}= \pm q} \int d^{3} R_{1} d^{3} H_{2} e^{-\beta \frac{q_{1} q_{2}}{\left|R_{1}-R_{2}\right|}} \tag{3.2}
\end{equation*}
$$

which is the second order term u^{\wedge} Eq. (2.2).
The diagrams of order λ_{R}^{3} are show in Figure 5. They separate into two classes: those with an even number of propagators between vertices (Figure 5a), and those with an odd number of propagators between vertices (Figure 5b). The even case contributes

$$
\begin{align*}
& A_{R}^{3} Z_{3}^{(e)} \\
& \quad \frac{\left(2 \lambda_{R}\right)^{3}}{3!} \sum_{2=0}^{\infty} \frac{1}{(2 R)!} \sum_{m=0}^{\infty} \frac{1}{(2 \pi)!} \sum_{n=0}^{\infty} \frac{3}{(2 n)!} \\
& \quad \times\left(d^{3} R_{1} d^{3} R_{2} d^{3} R_{3}\left(-8^{2} q^{2}\right)^{2 R+2 n+2 m}\right. \\
& \quad \times\left(\frac{1}{B \mid R_{1}-R_{2} T}\right)^{2 R}\left(\frac{1}{B \mid R_{2}-R_{3} T}\right)^{2 m}\left(\frac{1}{\theta \mid R_{3}-R_{1} T}\right)^{2 n} \tag{3.5}
\end{align*}
$$

ℓ is the number of propagators between vertex 1 and $2, m$ is the number between 2 and 3 , and n is the number between 3 and 1. Summation of (3.5) yields

$$
\begin{align*}
& A_{R}^{3} Z_{3}^{(e)}= \\
& \frac{\lambda^{3}}{31} \int d^{3} R_{1} d^{3} R_{2} d^{3} R_{3}\left(e^{T R_{1}-R_{2} T}+e^{\frac{B q^{2}}{T R_{1}-R_{2} T}}\right) \\
& \quad\left(e^{\frac{-B q^{2}}{T R_{2}-R_{3} T}}+e^{\frac{-8 q^{2}}{T R_{2}-R_{3} T}}\right) \\
& \times\left(e^{\frac{B q^{2}}{T R_{3}-R_{1} T}}+e^{\frac{-B q^{2}}{T R_{3}-R_{1} T}}\right) . \tag{3.0}
\end{align*}
$$

$$
\begin{align*}
\lambda_{R^{3}}^{3}(0) & =\frac{-\lambda_{R}^{3}}{3!} \int d^{3} R_{1} d^{3} R_{2} d^{3} R_{3}\left(e^{\frac{B q^{2}}{\left|R_{2}-R_{2}\right|}}-e^{\frac{-\Delta q^{2}}{\sqrt{R_{1}-R_{2} \mid}}}\right) \\
& \times\left(e^{\frac{B q^{2}}{\mid R_{2}-R_{3} T}}-e^{\frac{-B Q^{2}}{\left|R_{2}-R_{3}\right|}}\right)\left(e^{\frac{B q^{2}}{\left|R_{3}-R_{2}\right|}}-e^{\frac{-B q^{2}}{\left|R_{3}-R_{1}\right|}}\right) \tag{5.7}
\end{align*}
$$

Equations (3.6) and (3.7) sum to give

$$
\begin{align*}
\lambda_{R_{3}^{3}}^{3} & =A_{R}^{3}\left(2_{3}^{(e)}+2_{j}^{(c)}\right)=\frac{2 \lambda_{R}^{3}}{3!} \int d^{3} R_{1} d^{3} R_{2} d^{3} R_{3} \\
& \times\left\{\operatorname{exp-\theta q^{2}(\frac {1}{|R_{1}-R_{2}|}+\frac {1}{|R_{2}-R_{3}|}+\frac {1}{|R_{3}-R_{1}|})}\right. \\
& +\operatorname{expBq}^{2}\left(\frac{-1}{\left|R_{1}-R_{2}\right|}+\frac{1}{\left|R_{2}-R_{3}\right|}+\frac{1}{\left|R_{3}-R_{1}\right|}\right) \\
& +\operatorname{expBq^{2}(\frac {1}{|R_{1}-R_{2}T}-\frac {1}{|R_{2}-R_{3}T}+\frac {1}{|R_{3}-R_{1}|})} \\
& \left.+\operatorname{expBq^{2}}\left(\frac{1}{\left|R_{1}-R_{2}\right|}+\frac{1}{\left|R_{2}-R_{3}\right|}-\frac{1}{\left|R_{3}-R_{1}\right|}\right)\right\} \tag{3.8}
\end{align*}
$$

Doubtlessiy, perturbation theory reproduces the grand partition runction 20 ail orders in λ_{f} for inis pariicuiar exampie, the Coulomit piasmin in three dimensions. is enotrer intertcifen nat been used, or if several charges of different activizies had beet. uset, peirturbation theory would have reproduced \boldsymbol{z}. of course. the feynman rules vould have to be modifled. In particular Rule d would have to be replaced by
d) For each propagator associate a factor of $\frac{1}{B} V\left(r_{i}, r_{j}\right)$.

Particles of different activities vould lead to vertices which vould have to be distingulshed. The appropriate λ 's woud have to be associated with the appropriate vertices, etc. Finally, the types of graphs and the factors associated with a particular vertex order would be differ•nt. The Feynmen rules for other theories are thus easily obtained by modifying the rules presented in this paper.

A simplification can be made. There are zero order vertices (vertices to which no lines are attached) in the Feyrman graphs because the interaction $2 \lambda_{R}: \cos B q X:$ when Taylor expanded begins with $2 \lambda_{R}$. One rewrite $2 \lambda_{R}: \cos \beta q x$: $\left[\right.$ or $\left.\lambda^{(i)} e^{i \beta q^{(i)} x_{x}}\right]$ as $2 \lambda_{R}$: ($\left.\cos B q \chi-1\right):+2 \lambda_{R}$ [similarly for $\lambda^{(i)} e^{i B q^{(i)}} x^{\text {type terms]. }}$ Eq. $(2,7)$ can be rewritten as

As a resuit the statemerit, "jon't inchude zuro orcer eraphs but
 We kriw frce perturbaidor theor: that the contributions of eraphs may be expressed in the fort

$$
\begin{align*}
\mathcal{Y}= & \exp \left\{\sum \text { connected graphs }\right\}=\exp \left\{2 \lambda_{R} V\right. \\
& +\left(\sum_{k=2}^{\infty} \lambda_{R}^{2} b_{l}\right) v \mid \tag{3.10}
\end{align*}
$$

where $t_{k}=$ the connectec graphs of order λ_{R}^{ℓ}. The olume fector is put into the definition of the b_{f} tecause vacuur bubble diagrams are proportional to V due to translational invarianse (actually rinis is not quite correct because of boundary effect i, but is approximateiy true in the large volume limit). The acuum energy per unit area (three dimensions=two space + one time), \mathcal{E}, for the fiela theory is

$$
\begin{equation*}
\mathcal{E}=\sum_{l=1}^{\infty} b_{\ell} \lambda_{R}^{t} \quad\left(b_{1} \equiv 2\right) \tag{3.1.1}
\end{equation*}
$$

The b_{k} heve an important connection with atatisilical mechanics. They are the ciuster integrals of the Mayer expansion. ${ }^{10}$ The thermodynamlc properties are determined by these b_{R}. In particuler

$$
\begin{align*}
& \langle p\rangle=\sum_{l=1}^{\infty} t b_{\ell} \lambda_{R}^{l} \tag{3.128}\\
& g\langle p\rangle=\sum_{l=1}^{\infty} b_{l} \lambda_{R}^{l},
\end{align*}
$$

where ρ is the denisty of particles, $\langle p\rangle=\frac{\langle N\rangle}{V}$, and p is the pressure. When λ_{R} is expressed in terns of $\langle\rho\rangle$ via Eq. (3.12a) a.d substituted into (3.12b) the equation of stete is obtained.
$B<p\rangle$ of the statistical mechanical system is equal to the vacuum energy density, \mathcal{E}, of the field theory.

The small parameter in the Mayer expansion is the function, $e^{-B V(r)}-1$. Orten $V(r)$ is short ranged so that $e^{-B V(r)}-1$ is ncnzero only in a small region compared to V. Such a case occurs in the very massive (m>> $\frac{1}{V}$) Yukawa gas. An immediate application would be to the messive Schwinger model in two dimensions at zero Coleman angle, since, as previously noted, this is equivalent to

Lo the massive sine-Gordon lasrangian (see Eq. [2.17ji. The charge. e, of the Schvinger macel is re:nted to tat mess. m , of the passive sinc-Gordor. by $\frac{m^{2} \pi}{2}=e^{2}$. Hence one may obtain resuits in the strone couping ilfit of the mursive lirnwinefer made by asine the Mager claster expansion applié ic t Yinava gas. ${ }^{2:}$

In performite this cneck to crier \mathbb{i}_{F} one notices a correspordence betweri diagramatic perturoation theory anc the Coujorb gus. The vertices of Feynman diagrams are the ions and eiectrons of the plasma. In the Yukawa gas case, they woula be the quanta and ar the potertial $[\mathcal{F}(r)]$ case, one mieht all them the molecules. Up to a temperature factor the propagators represent the interactions. The number of interactions a particle undergoes is the same as the order of the vertex. Pairs of particles may undergo arbjtrarily many interartions and when sumned these give the Boltzman actors. An exterms vertex at x corresponds to fixing a malecule in the gas at x. In field theoretic language it is the vacuum expectation value of the operator, $\phi_{q}(x) \equiv e^{i B q x(x)}$. This operator may be interpreted as producing a charge, q, at x. Diagrams with several fixed external vertices are related to the correlation functions used in statistical mechanics. ${ }^{7,10}$ Ir. field theory they are the Green's functions of the $\phi_{q}(x)$ fields. Finally writing

$$
g^{\prime}=\sum_{N=0}^{\infty} \lambda_{R}^{N_{N}} \quad \text { (with } Z_{N} \text { the partition function for } N
$$

interacting particles), one sees that the $x^{\text {th }}$ ci: Jer diagrams yield
the N-particle partition function. Thus there is a complete cor.cspondence between Feyman diagrams and the Coulomb plasma. This correspondence is sumarized in Table 1.

There is a sense in which the usual polynomial field theories (such as g $\frac{\chi^{4}}{4!}$) are Coulomb or Yukawa plasmas. In a high temperature limit consider the sine-Gordon lagrangian those underlying statistical mechanical system is the Coulomb plasma. The potential, $V=-2 \lambda_{R}: \cos \sqrt{4 \pi \beta} q x$: (x has been rescaled to eliminate the B dependence in $H_{0}\left(=\frac{1}{2} \int \nabla_{X} \cdot \nabla_{X}\right)$, in this limit may be expanded in a Taylor series; $V=2 \lambda_{R}\left(-1+4 \pi B q^{2}: \frac{x^{2}}{2}:-\left(4 \pi B q^{2}\right)^{2}: \frac{x^{4}}{4!}\right.$: $+\cdots \cdot$. If the system is "hot" and x does not fluctuate violently from 0 , then $v \approx-2 \lambda_{R}+\lambda_{R} 8 \pi B q^{2}: \frac{x^{2}}{2}:-2 \lambda_{R}\left(4 \pi \beta q^{2}\right)^{2}: \frac{\chi^{4}}{4!}:$ and hence one has a massive X^{4} theory with mass equal to $8_{n} \lambda_{R} \sigma^{2}{ }^{2}$ and a small negative x^{4}-coupling constant, g, equal to $-32 \pi^{2} e^{2} q^{4} \lambda_{R}$. Perturbation theory would be useful in this high temperature limit since the coupling constant is smali. Allowing arbitrary charges and activities the potential, V, becomes

$$
\begin{equation*}
V=-\sum_{i} A^{(i)} e^{j \beta q(i)} x \tag{3.13}
\end{equation*}
$$

By adjusting the $\lambda^{(i)}$ and $q^{(i)}$ one may obtain better approximations to polynomial self-coupled field theories. In fact Eq. (3.13) is almost a Fourier transform. Unfortunately the $\lambda^{(i)}$ must be positive to retain their physical meaning. This restriction ruins the possibility of exact approximation.

IV. THE THO DIMETSSIONAL SINE-GORDON

The last two sections have presented general methods and techniques. A specific example, the two dimensional sine-Gordon theory, ${ }^{12}$ wili be, for the most part, the subject of the rest of this paper. As previousiy noted, this field theory is equivalent to a two dimensional Coulomb gas. The interparticle potential is a logarithmic one:

$$
\begin{equation*}
V(r)=-2 q_{1} q_{2} \ln \frac{\left|R_{1}-R_{2}\right|}{a_{0}} \tag{4.1}
\end{equation*}
$$

with a arbitrary. Eq. (4.I) is also the interaction between two parallel lines of charge, one with a ctarge per unit length a' $^{\prime} \mathrm{Y}_{1}$ and one of charge per unit lengit. of fa* Thus one ray view tiac charges, q, as the charge densities in fires in the usual three dimensional world. The wires are restricted to be perpendicular to a two dimensional sheet. Another equivalent model is to replace tine charged wires by currents. The magnetic interaction leads to the same logerithmic potential, $V=-2 I_{1} I_{2} \ln \frac{r}{a_{0}}$. The q 's would then be the currents, I.

The two dimensional Coulomb plesma differs from the three dimensional version in one important vay. Due to infrared divergences a smeared charge distribution has infinite energy unless it is neutral. Consider such a charge distribution, D, restricted to a finite
region, The electric field goes like $Q_{T}^{2} \frac{\vec{r}}{r^{2}}$ for large r. Therefore the energy density $\frac{\nabla \phi \cdot \nabla \phi}{8 \Pi}$ goes like $\frac{Q^{2}}{8 n} \frac{1}{r^{2}}$ and hence the
total energy diverges logarithmically unless the total charge, Q_{T}, is zero. In dealing with this two dimensional Coulomb gas one has two choices. The fir ut is to require total neutrality. of would become

$$
\begin{align*}
q y= & \sum_{n=0}^{\infty} \frac{\lambda_{0}^{2 n}}{n!n!} \int d^{2} R_{1} \cdots d^{2} R_{n} \int d^{2} x_{1} \cdots d^{2} x_{n} \exp \left\{B q^{2}\right. \\
& \left.\sum_{i, j}\left(\ln \frac{\left|R_{i}-R_{j}\right|}{a_{0}}+\ln \frac{\left|x_{i}-x_{j}\right|}{a_{0}}-2 \ln \frac{\left|R_{i}-x_{j}\right|}{a_{0}}\right)\right\} \tag{4.2}
\end{align*}
$$

g
is independent of a_{0} as long as self-energies are retained. of still corresponds to the sine-Gordon field theory because nonneutral plasmas do not contribute to the functional integral, however naive perturbation theory is incorrect. A correct lay of obtaining the Feynman rules is to use the massive sine-Gordon lagrangian and take the limit $m \rightarrow 0$. As soon as $m^{2} V \ll 1$ the massive propagator becomes $2 \ln |m r|$. Perturbation theory when rearranged and partially summed gives for

$$
\begin{align*}
z= & \lim _{m \rightarrow 0} \sum_{n=0}^{\infty} \frac{\lambda_{0}^{n}}{n!} \sum_{q_{1}= \pm q} \cdots \sum_{q_{n}= \pm q} \int d^{2} R_{1} \cdots d^{2} R_{n} \\
& \times \exp \left\{B \sum_{i, j} q_{i} q_{j} \ln m\left|R_{i}-R_{j}\right|\right\} . \tag{4.3}
\end{align*}
$$

The non-neutral sums in Eq. (4.3) are proportional to $\mathrm{m}^{B Q_{T}^{2}}$ and hence vanish as $m \rightarrow 0$. The Feynman rules should use the propagator of Eq. (4.2) in the limit where a_{0} goes to infinity. The technique of adding a mass term to the sine-Gordon lagrangian and letting the mass go to zero is not new. S. Coleman ${ }^{13}$ used it in a paper showing the equivalence of the sine-Gordon with the massive Thirring model. It has a physical mearing since it demands neutrality of the plasma system. This paper will use this version of handing the infrared divergence. Total neutrality will always be maintained.

An alternative approach is to enclose the system in a grounded conducting casing. Tf there is an excess charge within V then an equal an opposite charge will appear on the conductor. In calculating the partition function one integrates $\nabla \Phi \cdot \nabla \Phi$ only over the volure, V, since the conductor causes $\nabla \$$ to be zero outside V. The gaussian representation of y would be modified to

$$
\begin{equation*}
z=\frac{1}{N} \int D_{x e^{-\beta} \int_{V} \frac{\nabla x \cdot \nabla_{x}}{8 \pi}+2 \lambda_{0} \int_{V} \cos \beta q x} \tag{4.4}
\end{equation*}
$$

The equation of motion, $\frac{\beta}{4 \pi} \nabla^{2} x-2 \lambda_{0} \beta q \sin \beta q x=0$, is not valid because of surface terms due to integration by parts. These surface terms represent dynamical degrees of freedom and must be quantized. In principle this can be done using the techniques of M. Halpern and P. Senjanovic. ${ }^{14}$

V. THE PHASES OF THE SINE-GORDON

This section will review the work done un the two dimensionai Coulomb gas 5,15 and reiate it to the work done on the sine-Gordon fiela tieory. $3,4,5,13,16,17$ In particular, the phase of the system will be determined. Coleman has shown that a vacuum instability occurs when $B q^{2}$ gets too large. ${ }^{13}$ This corresponcs to a prase transition in the Coulomb system. ${ }^{5}$

Because the works of others will be referred to and because people have used different variables to denote the parameters of the sine-Gordon equation, there is some notational confusion. For exampie, the z that ©oleman uses is not the inverse temperature. When confusion is possible I will subscript letters witn the authors initiais. For example, tife B of Hauge and Hemmer is $\frac{1}{2}$ the B used in this paper so that $B_{H . h}$. will refer to their inverse temperature. This paper, for the most part, conforms with the notation of Kosterlitz and Thouless. Table 2 provides the relations between the parameters of this paper and the parameters which others use.

The method of Kosterlitz and Thouless will be used to determine the phases of the Coulomb system when λ_{R} is small. For $B q{ }^{2} \ll 1$, λ_{R} corresponds to the density, so that small i_{R} means a dilute system. In fact, at $B q^{2}=0$,

$$
3=\sum_{n=0}^{\infty} \frac{\left(\lambda_{R} v\right)^{2 n}}{n!n!} \cdot \text { Consider the situation where }
$$

in $V \gg 1$ even though $\lambda_{R} \ll 1$. 保 has a maximum contribution for $n \gg 1$. Replacing the sum by an integral and using Stirling's formula,

$$
\begin{align*}
& \approx \int e^{2 n \log \lambda_{R} V+2 n-2 n \log n-\log n} \frac{d n}{2 \pi} \\
& \approx \sqrt{\frac{-1}{2 \pi n^{\prime}\left(n_{\max }\right)}} e^{f\left(n_{\max }\right)} \\
& \approx \sqrt{\frac{\lambda_{R} V}{4 \pi}} \exp \left\{2 \lambda_{R} V-\log \left(\lambda_{R} V\right)\right\} \\
& =\sqrt{\frac{1}{4 \pi \lambda_{R} V}} e^{2 \lambda_{R} v} \tag{5.1}
\end{align*}
$$

where $f(n)=2 n \log \lambda_{R} V+2 n-\ln \log n-\log n$ and $n_{\max } e^{\frac{1}{2 n} \max }=$ $\lambda_{R} V . \quad n_{\max } \approx \lambda_{R} V$ for $\lambda_{R} V$ large. The integral has been approximated by Laplace's method. $\langle N\rangle=\lambda_{R} \frac{2}{P \lambda_{R}} \log 4 \approx 2 \lambda_{R} V . \quad \lambda_{R}=\frac{\langle N\rangle}{2 V}$ which shows λ_{R} is indeed a density. The limits $\lambda_{R} V \gg 1$ but $\lambda_{R} \ll l$ correspond to a situation where many ions are present but the density is small which is the proper statistical limit (in the limit $\lambda_{R} V \ll l$, $\langle N\rangle \approx \frac{1}{2} \lambda_{R}^{2} v^{2}$ so $\left.<\mathrm{N}\right\rangle \ll 1$ which is undesirable).

When λ_{R} is small one can calculate the mean square distance between an ion and an electron by assuming that the other charges in the plasma may be neglected. In fact the exact expression for
the mean square distance is

$$
\begin{equation*}
\left\langle r^{2}\right\rangle=\frac{\left.\sum_{n=0}^{\infty} \frac{\lambda_{0}^{2 n}}{n!n!} \int d^{2} x_{1} \cdots d^{2} x_{N} \int d^{2} R_{1} \cdots d^{2} R_{N} i x_{1}-R_{1}\right)^{2} e^{-8 U_{i}}}{\sum_{N=1}^{\infty} \frac{\lambda^{2 N}}{n!n!} \int d^{2} x_{1} \cdots d^{2} x_{N} \int d^{2} R_{1} \cdots d^{2} \bar{N}_{N} e^{-\beta U_{N}}}, \tag{5.2}
\end{equation*}
$$

Where U_{N} is the energy of the configuration (see Eq. [4.2]). The N-2

$$
\begin{align*}
\left\langle r^{2}\right\rangle & \approx \frac{\int_{r_{0}}^{R} r d r e^{-2 B q^{2} l n r_{r}}}{\int_{r_{0}}^{R} r d r e^{-2 B q^{2} l n r}} \\
& =\frac{\left(R^{4-2 B q^{2}-r_{0}}\right.}{\left(4-2 B q^{2}\right)\left(2-2 B q^{2}\right)}\left(R^{2-2 B q^{2}-r_{0}^{2}} 2-2 B q^{2}\right) \tag{5.3}
\end{align*}
$$

where r_{0} is an intraviolet cutoff introduced to make $\left\langle r^{2}\right\rangle$ well defined for $\mathrm{BC}^{2} \geq 1$. In fact if the charges were not point charges but "ringlets" of charge densities of radius, r_{0}, Eq. (5.3) would be the mean square distance between ringlets. In using Eq. (5.3) I am not implying that the $N=1$ term dominates. It is obvious from the above discussion that a large value of N dominates. Using the dominate term is, of course, like using a partition function in lieu of the grand sum. Eq. (5.3) is inaccurate in the region $r>\sqrt{\frac{V}{र N}}$
and the integrals should probably be cut off at such a value (which is still a large number in the dilute gas approximation). In Eq. (5.3) I have neglected "edge effects" which occur if one of the charges is near the boundary of the volume. Eq. (5.3) is calculated on the basis that one of the charges is at the center of the volume. Eq. (5.3) yields the following result for $\beta q^{2}<1$:

$$
\begin{equation*}
\left\langle r^{2}\right\rangle \approx \frac{R^{2}\left(1-B q^{2}\right)}{\left(2-B q^{2}\right)} \quad\left(\lambda_{R} \text { small }\right) \tag{5.4}
\end{equation*}
$$

The fluctuation in the distance between charges according to Eq. (5.4) is Jarge and hence for $\mathrm{Bq}{ }^{2}<1$ the Coulomb system is in the plasma phase, that is the electrons and ions do not pair up to form dipoles. At $B q^{2}=1$ the same is still true since

$$
\begin{equation*}
\left\langle r^{2}\right\rangle \approx \frac{R^{2}}{2 \ln \frac{R}{r_{0}}} \quad\left(\lambda_{R} \operatorname{small}\right) \tag{5.5}
\end{equation*}
$$

In the region where $l<B q^{2}<2 \quad<r^{2}$ s is renormalization dependent, i.e. $\left\langle r^{2}\right\rangle$ depends on the parameter r_{0} :

$$
\begin{align*}
\left\langle r^{2}\right\rangle & \approx \frac{\beta q^{2}-1}{2-\beta q^{2}} R^{2}\left(\frac{r_{o}}{R}\right)^{2 \beta q^{2}-2} \\
& =\frac{B q^{2}-1}{2-B q^{2}} r_{o}^{2}\left(\frac{R}{r_{0}}\right)^{4-2 B q^{2}} \tag{5.6}
\end{align*}
$$

Eq. (5.6) shows that although $\left\langle r^{2}\right\rangle$ is not of the order of the size of the system, it is still much greater than r_{o}^{2} and hence a dipole
collapse has not yet occurred. Although some dipoles may exist, the preponderance of ions and electrons are still unbound and thus the Coulomb plasma phase still occurs. Of course as λ_{R} gets bigger the above conclusions may to longer be correct since Eq. (5.3) is based on the dilute gas approximation. It's conceivable that if
λ_{R} gets large enough a phase transition might occur.
Finally for $B q^{2}=2$ and $B q^{2}>2$ the dipole phase occurs since

$$
\begin{align*}
\left\langle r^{2}\right\rangle & \approx 2 r_{0}^{2} \ln \frac{R}{r_{0}} \quad\left(B q^{2}=2\right) \\
& \left\langle r^{2}\right\rangle \approx \frac{B q^{2}-1}{B q^{2}-2} r_{0}^{2} \quad\left(B q^{2}>2\right) \tag{5.7}
\end{align*}
$$

A phase transition occurs around $B q^{2}=2$ for small λ_{R}. The nature of the phase transition is simple: as $B q^{2}$ increases the free ions and electrons of the Coulomb plasma vollapse to form dipoles, and a new gas of weakly interacting dipoles is formed. This phase transition has been examined in more detail by Kosterlitz and Thouless who find a divergence in the polarizabilit. in going from high β to low β (i.e. from dipoles to the plasma). This divergence is understandable since as the temperature increases the average separation between a plus and minus forming a dipole increases. This cuses the dipole moment to increase and as a result the polarizability of the system is greatly enhanced. Using reasonable methods they obtain that $q^{2} B_{c r i t i c a l} \approx 2$.

This phase transition has an important relation ta the sine-

Gordon field theory. The point $B q^{2}=2$ corresponds to $\beta_{C}^{2}=8 \pi$. It was precisely at this point that Coleman found a vacuum instability. One can nov understand this instability from the Coulomb point of view: it is precisely a phase transition from an ion plasma to a dipole gas.

Solitons are known to exist as solutions to the sine-Gordon equation. ${ }^{18}$ The way the critical temperature varies as λ_{R} varies is important since it may affect the number and stability of solitonantisoliton bound states. Luther ${ }^{17}$ has proven quantum mechanically stable bound states occur for $n=1,2, \cdots, \frac{8 q^{2}}{2-6 q^{2}}\left(0<B q^{2}<2\right)$ ($n=0$ always exists and is the usual soliton) with masses of the form

$$
\begin{equation*}
m_{n}=C(B) \sin \frac{n \pi}{2} \frac{B q^{2}}{2-B q^{2}} \tag{5.3}
\end{equation*}
$$

where $C(B)$ is a temperature-dependent renormalized constant. The renormalization of C depends on the lattice spacing and the $x-y$ anisotropy (Luther used the spin $\frac{1}{2} x-y-z$ lattice chain to obtain the above results). This seems to indicate the number of bound states does not depend on λ_{R}.

There are three possible phase diagrams which might occur. These are shown in figure 6. In these diagrams the pressure, p, or the density, ρ, may be substituted for λ_{R} if the equation of state is known. One strongly suspects that A_{R} increases monotonically as p or p increases for fixed volume and temperature. If figure ($6 a$) is the situation, the dipole phase (λ_{R} very large) would probably prevent the solitons from existing even though βq^{2} is less
than 2. bcth (a) and (c) cases require an adaitional purameter enter the theory, since λ_{R}, being the oniy dimensional constant, has no dimensionai quartity to set the scale. ${ }^{19}$ It's therefore meaningiess to pict λ_{B} versus $B G^{2}$. Indications (see section 7) are that for $B q^{2} \geq 1$ a cutoff must be introduced due $t r$ uniravioie: singuiarities. If this sutoff car. be removed without Entrodusine 4 new dimension into the theory (i.e. there is no dimensionel transmutation) ther the oniy possibility would be (b) and solitons of arbitrary a occur for $6 q^{2}$ suffiziently ciose to 2 . Kosterlitz and Phouiess obrained a curve similar to (c). They got acritical $q^{2}=$ $2\left(1+c \lambda_{R}\right.$) vith $c \approx 1.3 n$. They used a cutoff in their potential ($u_{K . T .}\{r\}=-q_{1} q_{2} \ln \frac{r}{r_{0}}+2 \mu$ for $r>r_{0}$ and $U(r)=0$ for $r<r_{0}$). The reason for their resurt is simple: they view the Coulowb system Eroc she dipoie side of scritical q^{2}. Their first approximation was to negiect the effects of all other dipoles in calculeting $\left\langle r^{2}\right\rangle$, the mean distance squarea between the plus and miris constituents of the dipole. They obtained $3_{\text {critical }}{ }^{2}=2$. What corrections resuit if other dipoies are taken into consideration? Basicaily, it will be easier to separate the plus and winus constituents because dipoles will interpolate to reduce the potential. Consequently, each charge is partially screenea and it wili be easier to pull them apart. The presence of jipoles lowers the temperature at which the piase occurs (in other words $B_{c r i t i c a l}{ }^{2}$ increases with ${ }^{\prime}{ }_{R}$). They expressed the screening in terms of an effective dielectric constant $\varepsilon(r)$ which depended on the separation of the plus and minus. If possibility (c) occurs as Kosterlitz and Thouless have predicted
one would expect the number of states to be different than is presently predicted (a natural guess would be $n=1,2, \cdots$,
$\frac{\beta}{\beta_{\text {critical }}-\beta}$ and correspondingly $m_{n}=C(6) \sin \frac{n \Pi}{2}\left[\frac{B}{E_{\text {critical }}-\beta}\right]$.

I refer the reader to their paper for their results. It may be that the situation depends on how one modifies the potential at short distances (to eliminate the ultraviolet singularities), and thus Kosterlitz and Thouless's result is one possible example uhich might oecur.

VI. THE NON-LINEAR G-MODEL

This section will show the equivalance of a non-linear σ-model and the sine-Gordon equation. ${ }^{20}$ First consider the linear $0(2)$ o-model with a linear symmetry breaking term:

$$
\begin{equation*}
\mathscr{L}=\frac{1}{2}(\partial \sigma)^{2}+\frac{1}{2}(a \pi)^{2}-V(\sigma, \pi), \tag{6.1}
\end{equation*}
$$

and

$$
\begin{equation*}
V(\sigma, \Pi)=-2 a \sigma+g\left(\sigma^{2}+\Pi^{2}-f_{\Pi}^{2}\right) \tag{6.2}
\end{equation*}
$$

hiden $a=0, m_{\pi}^{2}=0$ (Goldstone boson) and $m_{\sigma}^{2}=16 g f_{7}^{2}$ (the usual PCAC type reiation of the o-mass being proportional to f_{π}). When $a \neq 0$ the minimur of v occurs at $\pi=0, \sigma=(\operatorname{sign} a) f_{\pi}+\frac{a}{4 f_{\pi}^{2}}\left(\frac{1}{g}\right)+0\left(\frac{1}{g}\right)$ and the n-field acquires a mass, $m_{\Pi}^{2}=\frac{2 \backslash a \mid}{f_{\Pi}}+o\left(\frac{1}{g}\right)$. The non-linear o-model with a linear symaetry breaking term is the limit of Eq. (6.2) as $g+\infty$. This has the effect of requiring $\sigma^{2}+\pi^{2}=f_{\Pi}^{2}$. In fact, if Eq. (6.1) was used in a functional integral the limit $g \rightarrow \infty$ would produce a functional delta-function, $\delta\left(\sigma^{2}+\pi^{2}-f_{\pi}^{2}\right)$. To enforce the relation $\sigma^{2}+\Pi^{2}=f_{\Pi}^{2}$ let $\sigma=-f_{\Pi} \cos \theta$ and $\Pi=-f_{\Pi} \sin \theta$ where θ is a new field. \mathcal{S} becomes

$$
\begin{equation*}
\mathscr{L}=\frac{1}{2} \varepsilon_{\Pi}^{2}(\partial \theta)^{2}+\varepsilon \cdot r_{\Pi} \cos \theta . \tag{6.3}
\end{equation*}
$$

which is the sine-Gordon lagrangian. Rescaling $\theta=\frac{1}{f_{n}} \times$ gives

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2}(\partial x)^{2}+2 a f_{\pi} \cos \left(\frac{1}{f_{\pi}} x\right), \tag{6,4}
\end{equation*}
$$

or $V(x)=-2 a f_{\eta} \cos \left(\frac{1}{f_{\eta}} x\right)$ fror which one can translate the parameters of this model with the Coulomb gas parameters:

$$
\begin{align*}
& \lambda_{0}=2 a f_{\pi} \\
& \sqrt{4 \pi \beta} q=\frac{1}{f_{\pi}} \quad \text { or } \quad B q^{2}=\frac{1}{4 \pi f_{\pi}^{2}} \tag{6.5}
\end{align*}
$$

Since a phase transition takes place in the sine-Gordon field theory at $B q^{2}=2$ for λ_{B} small, a phase transition must occur in the non-linear $0(2)$ o-model with smail symmetry breaking term for $\mathrm{f}_{\mathrm{n}} \approx 1 / \sqrt{8 \pi}$. This complements the results of E. Brezin and J. Zinn-Justin ${ }^{21}$ and W. A. Bardeen, B. W. Lee, and R. E. Shrock ${ }^{22}$ sho find transitions in the $O(N)$ non-linear o-model in $2+\varepsilon$ dimensions for $N>2$.

VII. FENORMALIZATION

S. Coleman ${ }^{13}$ has indicated that the only renormalization necessary in the two dimensional sine-Gordon model is for the self-energy tadpoler (such as in Figure 1 b \}. These infinite contributions can be absorbed in λ_{0}. One should use a renormalized activity λ_{R} and ignore the tadpole self-energies. S. Coleman's result is true for $B q^{2}<I\left(\varepsilon_{C}^{2}<i_{i}\right)$. For $B q^{2} \geq 1$ the resuit is incorrect: although there are no divergent graphs in any finite order (in λ_{A} and B) of perturbation theory, there are divergences when grapins are summed. The reader has already seen an example of this: the connected vacum bubbles of order λ_{R}^{2} (the graphs of Figure 4 minus the first one). They sum to

$$
\begin{align*}
& \lim _{a_{0} \rightarrow \infty} v\left(\frac{2 \lambda_{R}}{a_{0} q^{2}}\right)^{2} \int^{2} r \sum_{n=0}^{\infty}\left(\frac{2}{B} \ln \left|\frac{r}{\varepsilon_{0}}\right|\right)^{2 n} \frac{\left(-B^{2} q^{2}\right)^{2 n}}{2(2 n)!}-2 \lambda_{R}^{2} v^{2} \\
& =\operatorname{iim}_{a_{0}^{+\infty}} \frac{2 \lambda_{R}^{2} v}{a_{0}^{2 \beta q^{2}}} \int_{V} d^{2} r\left[\left(\frac{r}{a_{0}}\right)^{2 B q^{2}}+\left(\frac{r}{a_{0}}\right)^{-2 B q^{2}}\right]-2 \lambda_{R}^{2} v^{2} \\
& =2 \lambda_{R}^{2} v \int_{V} d^{2} r\left[r^{-2 B q^{2}}-1\right] \text {, } \tag{7.1}
\end{align*}
$$

which converges for $8 q^{2}<1$ and diverges for $8 q^{2} \geq 1$. Vacuum bubbles are not the only diagrams vith divergences which cannot be absorbed in
λ_{0}. Consider the contributions to the two-point function from the graphs of Figure 7. They sum to

$$
\begin{gather*}
S(x, y)=\left(2 \lambda_{R}\right)^{2} \int_{V} d^{2} z_{1} \int_{V} d^{2} z_{2} \ln \frac{\left|x-z_{1}\right|}{a_{0}} \ln \frac{\left|z_{2}-y\right|}{a_{0}} \\
{\left[\left(\frac{\left|z_{1}-z_{2}\right|}{a_{0}}\right)^{2 B q^{2}}-\left(\frac{\left|z_{1}-z_{2}\right|}{a_{0}}\right)^{-2 B Q^{2}}-1\right] .} \tag{7.2}
\end{gather*}
$$

The parameter, a_{0}, has been left in and naive Feynman rules have been used in calculating Eq. (7.2). This is because the Green's functions for the fields $X(x)$ are ill defined. The interesting and well defined operaiors are the $q_{q}(x)=e^{i B q X(x)}$. Eq. (7.2) converges for $2 q^{2}<l$ and diverges for $B q^{2} \geq 1$ (the same woald be true if one salculated the Green's functions for the $\left.{ }_{q}(x)\right]$. Note that any individual graph of Figure 4 or Figure 7 is convergent. Thus one has a situation ($B q^{2} \geq 1$) where to any finite order (in $B q^{2}$) graphs have no ultraviolet divergences yet when perturbation theory is summed to all orders ultraviolet divergences appear, implying that non-perturbative rencrmalization methods are necessary. Of course, one can look at $\%$ (Eq. [4.2]) directly to see that there are ultraviolet divergences for $\mathrm{Aq}^{2} \geq 1$.

This section will consist of showing that to all orders in λ_{R} (as well as $B q^{2}$) y is well defined when $B q^{2}<1$. I take this to be a proof that the $O(2)$ non-linear o-model and the sine-Gordon field theory are renormalizable to all order for $8 q^{2} \leq 1 .{ }^{23}$ For $B q^{2} \geq 1$ a cutoff must be introduced. Whether it may be removed by
vave function and coupling constant renormalizations is unknown. If additional interaction counter-terms must be added to the theory, then the sine-Gordon lagrangian would have to be modified and the equation of motion would be an inaccurate representation. An implicetion of this: the soliton-antisoliton doublets wculd not exist. I suspect that renormalization should be possible at least for $1<B q^{2}<2$ since lattice methods ${ }^{l 7}$ have shown the existence of these aoublets. It is still uncertain how to do this in the continuum field theory, although the equivalence of the non-linear o-model and the sine-Gordon offers a possibility: since g has dimensions of (mass) ${ }^{2}$ and the linear o-model (Eqs. [6.1] and [6.2]) is renormalizable, g acts as a cutoff for the sine-Gordon theory. If one can show the relevant quantities are g-independent (or g dependence can be abscrbed into λ_{0}) for large g then this would provide the method of renormalization. The same is true in dimensions three and four where the equivalence oetween the two models still holds. Thus there is the possibility that using the linear o-model one car renormalize the sine-Gordon lagrangian in three and four dimensions.

I will now present strong evidence that the partition function

$$
\begin{align*}
& 2\left(B q^{2}, \lambda_{R}\right)= \\
& \quad \sum_{N} \frac{\lambda_{R}^{2 N}}{N!N!} \int d^{2} x_{1} \cdots d^{2} x_{N} \int d^{2} y_{1} \cdots d^{2} y_{N} \exp \left\{2 B q^{2}\right. \\
& \left.\quad \times\left(\sum_{i<j}\left[\ln \left|x_{i}-x_{j}\right|+\ln \left|y_{i}-y_{j}\right|\right]-\sum_{i, j} \ln \left|x_{i}-y_{j}\right|\right)\right\} \tag{7.3}
\end{align*}
$$

converges for $B q^{2}<1$. λ_{R}, of course, is $e^{-8 s e l f-e n e r g y}$ absorbed in λ_{j}. The method is not intended to be rigorous: physical arguments are used to approximate of. Eq. (7.3) contains only neutral configuration s because of the infrared singularity of the theory as discussed in Section IV. The arguments of this section also apply to the situation where neutrality is not required.
of acquires a big contributica whenever an x_{i} approaches a y_{j} and $B q^{2}$ is near i. The nature of the singularity is governed by

$$
\begin{align*}
& V I\left(B q^{2}, \varepsilon\right)= \int d^{2} x \int d^{2} y e^{-2 B q^{2} \ln |x-y|} \approx v \frac{\pi \varepsilon^{2-2 B q^{2}}}{1-8 q^{2}} . \tag{7.4}\\
&|x-y|<\varepsilon
\end{align*}
$$

Eq. (7.4) is the contribution to g when a plus and minus are within ε of each other (boundary effects being neglected). If ε is suficiently mall the plus-minus dipole will look like a neutral object and will interact very weakly with other charges and dipoles, even
when these objects approach the dipole. E is just a small parameter. If a plus and minus are rithin ε of eacin other then one says a dipole is present in the syotem. Since there will be a mean density, ρ, for the plasma and in this dissociated phase charges are rancomy located, the average distaice between charges is roughly $\sqrt{\frac{1}{p}}$. One can take ε to be a fraction of this distance, say $\varepsilon=0.1 \sqrt{\frac{l}{\rho}}$.

Consider the term in f wh N plus charges and N minus charges (i.e. Z_{N})

$$
\begin{equation*}
z_{N}=\frac{1}{N!N!} \int d^{2} x_{1} \cdots d^{2} x_{N} \int d^{2} y_{1} \cdots d^{2} y_{N} e^{-B U_{N}\left(x_{i}, y_{j}\right)} \tag{7.5}
\end{equation*}
$$

and single out the contribution due to dipoles

$$
\begin{aligned}
& Z_{N}=\frac{1}{N!N!}\left\{\begin{array}{c}
d^{2} x_{1} \cdots d^{2} x_{N} \int d^{2} y_{1} \cdots d^{2} y_{N} e^{-B U_{N}} \\
\left|x_{i}-y_{j}\right|<\varepsilon \text { for some } i, j
\end{array}\right. \\
& +\int d^{2} x_{1} \cdots d^{2} x_{N} \int d^{2} y_{1} \cdots d^{2} y_{N} e^{-\beta U_{N}}+\ldots+ \\
& \left|x_{i_{1}}-y_{y_{1}}\right|<\varepsilon \\
& \left|x_{i_{2}}-y_{j_{2}}\right|<\varepsilon \\
& \text { for some } i_{1}, j_{1}, i_{2}, j_{2}
\end{aligned}
$$

$$
\begin{align*}
& +\int d^{2} x_{1} \cdots d^{2} x_{N} \int d^{2} y_{1} \cdots d^{2} y_{N} e^{-B U_{N}} \\
& \left|x_{i_{1}}-y_{j_{1}}\right|<\varepsilon \quad \text { for some ordering of } \\
& \left|x_{i_{2}}-y_{j_{2}}\right|<\varepsilon \quad \text { the } x^{\prime} s \text { and } y^{\prime} s . \\
& \vdots \\
& \left|x_{i_{N}}-y_{y_{N}}\right|<\varepsilon \\
& \left.+\int d^{2} x_{1} \cdots d^{2} x_{N} \int d^{2} y_{1} \cdots d^{2} y_{N} e^{-\beta U_{N}}\right\} \tag{7.6}\\
& \text { no dipoles }
\end{align*}
$$

The first N terms in Eq. (7.6) have precisely $1,2, \ldots$, respectively N dipoles. The last term is the no dipole term where no x_{i} is within ε of any y_{j}. Because dipoles interact weakly they may be factored out of the summands of Eq. (7.6):

$$
\begin{equation*}
z_{N}=\sum_{\ell=0}^{N} \frac{v^{\ell}\left[I\left(B q^{2}, \varepsilon\right)\right]^{\ell} z_{N-\ell}^{N o \text { Dipole }}(\varepsilon)}{\ell!} \tag{7.7}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathrm{z}_{\mathrm{n}}^{\text {No Dipole }}= \\
& \begin{array}{l}
\frac{1}{n!} \frac{1}{n!} \int d^{2} x_{1} \cdots d^{2} x_{n} \int d^{2} y_{1} \cdots d^{2} y_{n} e^{-\beta U_{n}\left(x_{i}, y_{j}\right)} \\
n o x_{i} \text { within } \varepsilon \text { of } y_{j}
\end{array} \tag{7.8}
\end{align*}
$$

The combinatorial factor is accounted for as follows: There are $\frac{[N(N-1) \cdots(N-\ell+1)]^{2}}{\ell!}$ ways of pairing up \& pluses with $\&$ minuses from a set of N pluses and N minuses. This number times $\frac{1}{N!} \frac{1}{N!}$ gives the $\frac{1}{\ell!(N-2)!(N-\ell)!}$ of Eqs. (7.7) and (7.8). Eqs. (7.3), (7.6), and (7.7) yield

$$
\begin{equation*}
y=e^{V I\left(B q^{2}, \varepsilon\right) \lambda_{R}^{2}} z^{\text {No Dipole }}(\varepsilon) \tag{7.9}
\end{equation*}
$$

As long as $B q^{2}<1, I\left(B q^{2}, E\right)$ is small as one sees from Eq. (7.4). It remains to show $f^{\text {No Dipole }}(\varepsilon)$ does not diverge. Heuristically the reason for this is as follows: $y^{\text {No Dipole vanishes if a plus }}$ approaches a plus or a minus approaches a minus and hence the charges must be evenly distributed when N becomes large. Consider a minus charge. Since the plasma is neutral it will se a charge distribution of +1 . Neglecting boundary effects, one can lump this +1 charge distribution at some effective distance $r_{e f f}(N, E)$. For ε small enough $r_{\text {eff }}$ will be independent of E and for \mathbb{N} large enough it will be a slowly varying function of N. For simplicity take $r_{\text {eff }}$ to be a constant as N goes to infinity. Then for large N

$$
\begin{equation*}
z_{N}^{\text {No Dipole }} \sim \frac{1}{N!} \frac{1}{N!}\left(r_{e f f}-2 B q^{2}\right)^{2 N} v^{2 N} \tag{7.10}
\end{equation*}
$$

and this implies $q^{\text {No Dipole }} \equiv \sum_{n=0}^{\infty} \lambda_{R}^{2 N} z_{N}^{\text {No Dipole }}$ converges.
To make the above argument more precise let N be large. Break V into $2 N$ square cells of volume $\frac{V}{2 N}$. The length of the side of a
cell is $\sqrt{\frac{V}{2 N}}=d(N)$. Approximate $z_{N}^{N o}$ Dipole by summing over all ways of placing the plus and minus charges into the 2 N cells:

$$
\begin{equation*}
z_{N}^{\text {No Dipole }}=\sum_{C} \frac{1}{N!N!}\left[\left(\sqrt{\frac{V}{2 N}}\right)^{2}\right]^{2 N} e^{-8 U(C)} \tag{7.11}
\end{equation*}
$$

$\left(\sqrt{\frac{V}{2 N}}\right)^{2}$ is the area in which a charge is allowed to roam, C is
a placement of the pluses and minuses into cells, and $U(C)$ is the energy of such a configuration (calculated with the charges at the center of the cells). The minimum energy configuration by symmetry occurs when the plus and minus charges alternate as in Figure 8. To approximate the energy of this configuration, pick a charge. It has four nearest opposite charges (Figure 9a) contributing a factor of $\left(d^{4}\right)^{-28 q^{2}}$ and four nearest like charges (Figure $9 b$) contributing a factor of $\left[(\sqrt{2} d)^{4}\right]^{28 q^{2}}$. In the next row (Figure $9 c$) there art eight opposite charges and eight like charges giving a factor of $\left[(2 d)^{4}\right]^{2 \beta q^{2}}\left[(\sqrt{5} d)^{8}\right]^{-2 \beta q^{2}}\left[(\sqrt{8} d)^{4}\right)^{2 \beta q^{2}}$. To this order $e^{-\beta U(\text { single charge })}$ $=\left[4\left(\frac{4}{5}\right)^{2}\left(\frac{8}{5}\right)^{2}\right]^{2 \beta Q^{2}}$. Taking into consideration all rows and neglecting edge effects

$$
\begin{align*}
f(N) & =e^{-\beta U(\text { singie charge })} \\
& \approx \prod_{n=0}^{\sqrt{N}} \prod_{m=1}^{\sqrt{N}}\left(\sqrt{n^{2}+m^{2}}\right)^{4(-1)^{m+n} 2 \beta q^{2}} \\
& =\exp \left\{\sum_{n=0}^{\sqrt{N}} \sum_{m=1}^{\sqrt{N}}(-1)^{n+m} 48 q^{2} \ln \left(n^{2}+m^{2}\right)\right\} . \tag{7.12}
\end{align*}
$$

Because the signs alternate f will be a slowly varying function of N (for example the third row multiplies the result of the first two by only $\left.\left[\left(\frac{10}{9}\right)^{2}\left(\frac{10}{14}\right)^{2}\left(\frac{18}{14}\right)^{2}\right]^{289^{2}} \approx(1.04)^{2 B q^{2}}\right)$. The total contribution to $e^{-B U\left(C_{\min }\right)}$ is $\left[f(N)^{2 N}\right]^{1 / 2}$ (2N for each particle and a $1 / 2$ for double counting). One can bound $\mathrm{z}_{\mathrm{N}}^{\mathrm{No}}$ Dipole by replacing $\mathrm{e}^{-\beta \mathrm{U}}$ by its maximum value $\mathfrak{f}(N)^{N}$. Since there are (2N)! ways of putting the charges into the cells,

$$
\begin{gather*}
z_{N}^{\text {No Dipole }}<\frac{(2 N)!}{N!N!}[f(N)]^{N}\left(\frac{v}{2 N}\right)^{2 N} \\
\quad \sim \frac{v^{2 N} f(N)^{N} \sqrt{4 n N} e^{-2 N}}{N!N!} \tag{7.13}
\end{gather*}
$$

where Stirling's approximation has been used in the last step. Since $f(N)$ (Eq. [7.12]) is a slowly varying funciton of $N, 2_{N}^{\text {No Dipole }}$ is highly attentuate for N large and $\mathcal{C}_{\text {No }}$ Dipole converges.

It has now been shown that $g\left(\lambda_{R}, B q^{2}\right)$ is finite for $B q^{2}<I$. F represents the sum of all vacuum bubble diagrams (in a finite volume limit). Since this sum converges this indicates that other functions (such as Green's functions of the relevant operators) will have no divergences. It is folklore that the vacuum bubbles represent the most ultraviolet divergent graphs.

The main result of this section is that the prescription of absorbing the self energies into the activity renormalizes the sine-Gordon to all orders when $B q^{2}<1$.

For the statistical analogue field theories discussed in this
paper, renormalization may be regarded as the removal of smearing functions. Consider the sine-Gordon. When γ is smeared by an appropriate $f(E q$. [2.19]) a vell defined non-trivial partition function, $g(f)$ is obtained (well defined in the sense that no infinities occur and non-trivial in the sense that $g(f)$ is not 2 or $e^{2 \lambda_{R} V}$, which is the ideal gas grand partition function). $z(f)$ is, however, non-relativistic. One vould like to take the limit $f(x) \rightarrow \delta^{d}(x)$ so as to recover Poincare invariance. Doing this naively causes $f(f)$ to go to one because the $N \neq 0$ terms give zero due to the infinite self-energy. The way to avoid this problem is to let λ_{0}, the bare activity, depend on $f: \lambda_{0} \equiv \lambda_{0}(f)$. of becomes

$$
\begin{equation*}
q(f)=\frac{1}{N} \int D_{x e^{-B} \int \frac{\nabla_{x} \cdot \nabla x}{8 \pi}+2 \lambda_{0}(f) \int_{V} \cos B q(x \star f)} \tag{7.14}
\end{equation*}
$$

Eq. (7.14) gives an upper bound on f of $e^{2 \lambda_{0}(f) V}$ since the functional $\int_{V} \cos B q X \star f \leq V$. I has a lower bound of 1 since the partition function is a sum of positive terms beginning with $1 . \lambda_{o}(f)$ is
 should produce a good theory. The reader has seen one example of this, the sine-Gordon in two dimensions in the region $\mathrm{Bq}^{2}<1$. If one takes

$$
\begin{equation*}
\lambda_{0}(f)=C e^{-\beta q^{2} \int f(r) \ln \left|r-r^{-}\right| r\left(r^{-}\right) d^{2} r d^{2} r^{-}} \tag{7.15}
\end{equation*}
$$

where C is arbitrary (from $\lambda_{R}=\lambda_{0} e^{-\beta s e l f-e n e r g y ~}$ one identifies C with λ_{R}), then the limit $f(x) \rightarrow \delta^{2}(x)$ produces a well derined γ. $\lambda_{0}(f)$ goes to infinity in such a way as to keep λ_{R} finite and prevent $\%$ from going to 1 . In the region $B q^{2} 21$, the $\lambda_{\rho}(f)$, defined ry Eq. (7.15), would cause g(f) to become infinite as $f \rightarrow \delta^{2}$ and in this new region one must not let $\lambda_{0}(f) g o$ to infinity as fast as in the $B q^{2}<l$ region. Possibly a sequence of $\lambda_{0}(f)$'s can be found which affects a cancellation betveen self-energy and interparticle interaction infinities.

Green's functions (and other relevant objects) must always be calculated using this limiting procedure. Consider

$$
\begin{align*}
G(x, y) & =\left\langle e^{i \beta q x(x)} e^{-i \beta q x(y)}\right\rangle \\
& =\frac{1}{N} \iint r_{x^{\circ}}^{-\beta \int \frac{\nabla x-\nabla_{x}}{8 \pi}+2 \lambda_{0}} \int_{V} \cos \beta q x \\
& \times e^{i \beta q_{X}(x)} e^{-i \beta q_{X}(y)} . \tag{7.16}
\end{align*}
$$

Even arter smearing ($\int \cos 8 q x * f$) and using $\lambda_{0}(f)$ of Eq. (7.15), this plus-minus Green's function is zero due to the ultraviolet infinite self-energy produced by $e^{1 \beta q X(x)}$ and $e^{-1 \beta q X(x)}$. The correct way of calculating is to replace Eq. (7.15) by

$$
\begin{align*}
G(x, y) & =\frac{1}{N} \int D_{x e}-\beta \int \frac{\nabla x \cdot \nabla_{x}}{8 \pi}+2 \lambda_{0}(f) \int_{V} \cos \beta q(x * f) \\
& \times z^{2}(f) e^{i \beta q(x \star f\rangle(x)} e^{-i \beta q(x * f)(y)} \tag{7.17}
\end{align*}
$$

where $Z(f)$ is a wave function renormalization constant. From physical principles one knows $Z(f)$ must be proportional to $\exp \left\{-B q^{2} \int f(r) \ln \mid r-r^{-} f f\left(r^{\prime}\right) d^{2} r d^{2} r^{\prime}\right\}$ since $G(x, y)$ has a physical interpretation: $G(x, y) y$ is the partition function for a neutral Coulomb gas with a plus charge at x and a minus charge at y. Non-renormalizability can be viewed as follows: As $f \rightarrow \delta^{d}$ dipoles, triatomic molecules, molecular rings, and other polyatomic structures uill begin to form. One must introduce renormalized acitivites for each of these structures. If $f \rightarrow \delta^{d}$ is too singular a 2imit to take, an infinite number of polyatomic objects wil form causing one to introduce an infinit, numberof renormalized activities.

This infinite set is reminiscent of what happens with polynomial field theories such as x^{6} in four dimensions. Here one is forced to introduce an infinite set of counterterms,

$$
\sum_{n=1}^{\infty}\left(\delta g_{2 n}\right) x^{2 n}
$$

The $\delta g_{2 n}$ couplings correspond to the unrenormalized activities. In the high temperature Ifmit of the sine-Gordon $\mathcal{V}(x) \approx 2 \lambda_{R}$ $\left[-1+\left(4 \pi B q^{2}\right) \frac{x^{2}}{2}-\left(4 \pi 8 q^{2}\right)^{2} \frac{x^{4}}{4!}+\left(4 \pi B q^{2}\right)^{3} \frac{x^{6}}{6!}\right]$ which is a polymomial field theory with a x^{6} leading term. The high temperature sine-Gordon beiag simiiar to this polynomial potential implies the formation of poiyatomic structures in the x^{6} theory. Thus one suspects that the cause for non-renormalizability for the statistical analogue Field theories is the same as in non-renormalizable polynomial field theories.

VIII. TIDBITB

Abstract

The corropindence Letvoen aine-Gordon and Coulomb gat indicatea that many effecta are completejy miased In the nalve treatment of the theory, Most inportant is the otructure of the vacuum. When λ_{f} its very amall perturbaiton theory is valid. The varuuth bigeer, the vaculam it full of ehames and the periourtation thocory maniy flus ard minus lofis. Ale, mitased in ferturtation theory in (armi hence the entire theory) ta radirably ditferent from vhen atructure vilah vill leal ho quark fonflnement, baymghatide freedum, would be comatathie with ayymplet.te treedum and quarh robilmement. at'fect of theme tvi, quarks. Hence amall distance thenavior visula be guverned by bare vacum and Iree Interactions. AL large aejarationa distance the quanta vould interpolate betveen the quarka and strane affects could oceur. For example, a condensation into another phate mighl take place in the region betveen quarks eapecially if the gas la near a phase tranaition point. Such a condenaation could provide a confining potential. In the two dimenaional aine-Gordon in the

plasma phase ($8 q^{2}$ smadl) one has asymptotic frecaom. $G(x, y)$ (Eq. [\%.16]) goos Jike $|x-y|^{-28 q^{2}}$ for gmall $|x-y|$. Thia ia the yame as in a free field theory (one vould bum the diagrank of FHure 4 with the tug vertices labelled bs and y). Huwever, fa Lhis same phase there is charge arreening for larke diatamect, abid

 an' batividually with the vaculur, la the aspote phase, ditrerent

 fhysical hatita ofre can write

$$
\begin{equation*}
\left\langle e^{9 \operatorname{Br}_{4}\left(n_{1}\right)} \ldots e^{1 \sin _{1 \times}\left(n_{n}\right)} \sim_{H}^{n} .\right. \tag{1:1.1}
\end{equation*}
$$

 two chargea will wit tie curiflimed.

Now romatiler the bituation when rraidional eharges (bay a -1/. and a $-1 / \because$) are phaced th the var-umb. Theare rachional rharged
 Practiomal chargea are not acreened, lise fateraction between the
 atyile affecta. The difole atranght (which ia determined by rencirmaldzationf vill gotern how much the alpoles influene the interactitul
of the fractional charges. For weak dipoles, one expects the logarithmic potential to remain iatact. One can vrite

$$
\begin{equation*}
\left\langle e^{i \beta \frac{g}{2} x(x)} e^{-1 \beta \frac{q}{2} x(y)}\right\rangle \sim|x-y|^{-2 \beta q^{2}(|x-y|)} \tag{8.2}
\end{equation*}
$$

with $q(r)$ an effective charge satisfying $q(r) \rightarrow 1 / 2$ for $r \neq 0$ (asymptotic freedom) and $q(r)$ slowly varying for large r. This type of charge screening of the Green's function is reminiscent of a similar phenomenon ${ }^{11}$ found in the massive Schwinger model. In general ons has

$$
\begin{gather*}
\left\langle e^{i \beta(N+f) q x(x)} e^{-i B(N+f) q x(y)}\right\rangle \\
\quad \sim \lambda_{R}^{2 N}|x-y|^{-2 \beta f^{2} q^{2}(|x-y|)} \tag{8.3}
\end{gather*}
$$

with $0 \leq f<1$, fq being the fractional excess charge. For $f=0$ the Green's functions are roughly constant. One can, of course, introduce triality operators
$\Phi_{q / 3}(x)=e^{i \beta \frac{q}{3} x(x)}$ and $\Phi_{q / 3}(x)=e^{-i \beta \frac{q}{3} x(x)}=\phi_{-q / 3}(x)$. The Green's
functions for these operators vanist uniess the number of $q / 3^{\prime \prime} s^{\prime}$ minus the number of $\Phi_{q / 3}{ }^{\prime \prime}$ s is three times an integer. $\phi_{q / 3} \phi_{q / 3}^{\omega}$ configurations and $\Phi_{q / 3} \Phi_{q / 3} \Phi_{q / 3}$ configurations exist. This resembles the triality of the quark model. Of course, there also are n-ality
operators ${ }_{q / n}^{(2)}=e^{i \beta \frac{g}{n} x(x)}$ and ${ }_{q / n}(x)=\varphi_{-q / n}(x)$. It is the nature of the vacuum that determines these unusual effects.

Fractional quanta have already been used as a possible quark confinement mechanism in four dimensions. Thamodel in mind is the meron gas of Cailan; Dashen, and Gross, ${ }^{24}$ where ta. charod in the theory is not the usual charge but the topological charge, and the particles having fractional $1 / 2$ charge are the merons. The use of fractional quanta is not es unnatural as one might think.

Another interesting effect is that the relfvant operators are of the form $\Phi_{\rho}=e^{i \beta x(\rho)}\left(x\{\rho\} \equiv \int x(x)_{p}(x) d^{2} x\right)$ since these operators produce charge distributions, ρ, in the Coulomb analogue model. These operators are precisely the ones Coleman used to show the equivalence between the sine-Gordon and the massive Thirring. Being use to perturbation theory one usually works with the bare vacuum and approximates the interacting fields by free fields in which case the interesting Green's functions are $\left\langle x\left(x_{1}\right) \cdots x_{n}\left(x_{n}\right) \geqslant\right.$. The sine-Gordon theory shows that such simplistic vacuum expectation values may not be the interesting ones. In fact there is no reason why, in a particular theory, the relevant operators are not complicated functions of the fields. This conclusion may be applicable to gauge theories.

A third unusual effect is due to the infrared divergences in the sine-Gordon two dimensional theory. The normal Feyamen rules are invalid. For example, one would conclude from $\boldsymbol{\mathcal { C }}_{\mathrm{I}}=2 \lambda_{\mathrm{o}} \cos \mathrm{Bqx}$ that bubble diagrams of order λ_{0}^{3} (such as in Figure 10) contribute
to the vacuum energy. This is incorrect since it violates charge neutrality. Renormalization procedures vould be upset if non-neutrality is not maintained since the use of $\ln \frac{|x-y|}{a_{0}}$ for the propagator would make the theory depend on a_{0}, which it should not. The modification of naive perturbation theory rules by infrared divergences may affect four dimensional theories auch as the popular gauge theories. If such on effect occura the usual Feynman rules are wrong and may upget the renormalization of infrared singularities.

Fourthly, it is curious that to every pinite order (in $B q^{2}$) in perturbation theory there are no ultraviolet singularities; yet when all orders are summed an ultraviolet divergence arises when $B q^{2} \geq 1$. The reader has already seen this in the bubble diagrams of Figure 4. They have no ultraviolet singularities to any finite order; yet when sumed they are $\sim \lambda_{R}^{2} \int r^{-2 B q^{2}} d^{2} r$ which diverges for $B q^{2} \geq 1$.

Oxe unanswered question still remains: since the sine-Gordon equations has soliton solutions, what do these solitons mean in the Coulomb gas context? Mandelstam ${ }^{16}$ has constructed the solition operators. They are of the form

$$
\begin{align*}
& \psi_{1,2}^{(x, t)}=c_{1,2} \exp \left\{-2 \pi i \beta_{M}^{-1} \int_{-\infty}^{x} d \zeta \pi(\tau, t) \mp \frac{1}{2} \beta_{M} \phi(x, t)\right\} \\
& \psi_{1,2}^{+}(x, t)=C_{1,2}^{*} \exp \left\{2 \pi i \varepsilon_{M}^{-1} \int_{-\infty}^{x} d \zeta \pi(\zeta, t) \pm \frac{1}{2} \beta_{M} \phi(x, t)\right\} . \tag{8.4}
\end{align*}
$$

Using $\beta_{M}=\sqrt{4 \pi \beta} \quad q$, rescaling $\phi=\sqrt{\frac{\beta}{4 \pi}} x$ and rotating to Euclidean space

$$
\begin{align*}
\psi_{1,2}(x, t) & =c_{1,2} \exp \left\{+\frac{1}{2 q} \int_{-\infty}^{x} a_{i} \dot{x}(\zeta, t) \mp i \beta \frac{q}{2} x(x, t)\right\} \\
\psi_{1,2}^{+}(x, t) & =c_{1,2}^{*} \exp \left\{-\frac{1}{2 q} \int_{-\infty}^{x} d \dot{x}(\zeta, t) \pm i \beta \frac{q}{2} \quad x(x, t)\right\} . \tag{8.5}
\end{align*}
$$

The operator $e^{i \beta \vec{p} \cdot \nabla_{X}(x)}$ produces a dipole of strength p since $e^{i \vec{\beta} \vec{p} \cdot \nabla_{X}(x)}=\exp \left\{i \beta \frac{p}{\alpha}\left[x\left(x+\frac{\vec{a}}{2}\right)-\underset{\vec{a}}{x}\left(x-\frac{\vec{a}}{2}\right)\right\} \quad \underset{\rightarrow}{\vec{a}} \quad\right.$ produces a charge $\frac{p}{a}$ at $x+\frac{\vec{a}}{2}$ and a charge $-\frac{p}{a}$ at $x-\frac{\vec{a}}{2}$ (where $\left.\vec{p}-\vec{q} \vec{a}\right)$, $\psi_{1}^{+}(x)$ has the interpretation of producing a charge $+\frac{g}{2}$ at x and an imaginary dipole string. The dipoles point in the t-direction and have a strength density of $\frac{i}{2 q \beta}$. The string is along the x-direction and ends at x. The imaginary dipole string makes little sense from the Coulomb point of view. Because of this complinated interpretation, the Coulomb gas analogy does not seem useful.

IX. SLIPLARY

Here is a list of the main reaults:
A. (Section II) Certain field theories are equivalent to gases of interacting particies, in particular

1. The aine-Gordon corresponds to e. neutral Coulomb gas.
2. The "massive" aine-Gordon and the massive Schwinger model at zero Coleman angle correspond to a gas of quante interacting via Yukava potentiale.
B. (Section III) The Feymman diegrams for these theories have a statistical mechanical interpretation. The correspondence is outlined in Table 1.
C. (Section V) The vacuurn of the two dimensional sine-Gordon undergoes a phase transition at $B q^{2}$ near 2. For $8 q^{2}=2$ there is a plasma phase and for $B q^{2}>2$ there is a dipole gas phase. $B q^{2}=2$ is precisely the value Coleman ${ }^{13}$ rinds a vacuum instability.
D. (Section VI) The two dimensional non-linear $O(2)$ o-model with linear symetry breaking term is equivelent to the sine-Gordon theory. Results C and D imply
3. The σ-model undergoes a phase transition for $f_{n}=\sqrt{\frac{1}{8 \pi}}$.
4. The o-model contains solitons and feraions.
E. (Section VII) When $B q^{2}<1$ the sine-Gordon (Eassive Thirring and $O(2)$ o-model) are renormalizable to all orders, i.e. they are vell defined theories. 25
F. (Section VIII) The dipole phase of the sine-Grodon completely shields integral charges but is unable to do so for frectionel charges.
G. The relevant operators for the sine-Gordon are not simply polynomials in the fields. They are $\phi_{q}(x)=e^{i \beta q X(x)}$ and have the simple physical interpretation of producing a charge, q, at x. They are the operators used by Coleman to prove the equivalence of the sineGordon and masaive Thirring models.
H. (Section VIII) Operators exhibiting the quark-like triality condition are $q_{q / 3}(x)$. They have this property because of the infrared singular nature of the sine-Gordon field theory.
I. (Section IV and VIII) Naive Feyman rules may be incorrect when infrared singularities occur. The sine-Gordon exhibits such a property.
J. (Section VII and VIII) The sine-Gordon has no ultraviolet singularities to every Piniter order of perturbation theory; yet vhen diagrams are sumped an ultraviolet divergence appears.
K. Callan, Dashen, and Grose ${ }^{26}$ have recently shown that the instantion approximation to $2-\mathrm{d}$ charged scalar electrodynamics with massless fermions is equivalent to a neutral Coulomb gas. The instantons are Nielsen-0lesen vortices. The effect of the massless fermions is to raise the inverse temperature, $B q^{2}$, from 0 to N, the number of rermions. Since the Coulomb interaction is mitigated at short distances their model has a natural renormalization. Their result together with Result I of this paper implies their model will possibly have (sineGordon) solitons. The existence of such solitons depends on how much the Coulomb force is modified and how good the instanton approximation is.

There is a good chance that a theory of atrong interactions in four dimensions will have many of the properties exhibited by the two dimensional sine-Gordon theory. It is conceivable that the hairon vacuum has a complicated structure which must be treated using statistical mechanics. Strange effects can occur when such a vacuum has "lot's of quanta" in it. It would be able to support asymptotic freedom because at short distances the quanta are ineffective and at the same time it could provide confinement since at large diatances the many body effects of such quanta can be unusual. It is conceivable that string like-structures or other types of extended objects could condense out of the vacuum when other quanta such as quarks are introduced. Further unusual effects created by strong interaction vacuma may provide for the triality condition now observed.

* Research sponsored by the National Science Foundation, Grant MPHY77-23512.

1. See, for example, R. Brout, Phys. Reports 10C, 1 (1974).
2. For a review see F. W. Wiegel, Phys. Reports 16c, 57 (1975).
3. S. Albeverio and R. H申egh-Krohn, Comm. Math. Phys. 30, 171
(1973); J. Fröhlich, Phys. Rev. Lett. 34, 833 (1975); J. Fröhlich, Renormalization Theory, Edited by G. Velo and A. S. Wightman, (D. Reidel Publishing Co., 1976).
4. J. Frohlich and E. Seiler, Helvetica Fhysica Acta 49, 889 (1976);
J. Frohlich and Y. M. Park, Helvetica Physica Acta 50, 315 (1977).
5. J. Frơhlich, Comm. Math. Phys. 47, 233 (1976).
6. A. M. Polyakov, Nucl. Phys. Bl20, 429 (1977).
7. See, for example, J.D. Jackson, Clessical Electrodynamics, (John Wiley and Sons, Inc., 1975) or L. D. Landau and E. M. Lifshitz, Statistical Physics, (Pergamon Press, 1970).
8. This is due to boson-fermion correspondence in two dimensions, For a summary see M. Bander, Phys. Rev. Dl3, 1566 (1976) and the references therein.
9. For two dimensions (which will be needed later) the propagator is $\frac{2}{B} \ln \frac{|r|}{a_{0}}$ where e_{0} is an arbitrary scale.
10. See, for example, A. Isihara, Statistical Physics, (Academic Press, 1971).
i1. The Schwinger model (both massive and massless) has many interesting properties. See J. Lowenstein and A. Swieca, Ann. Phys. 68, 172 (1971); A. Casher, J. Kozut, and L. Susskind, Phys. Rev. DlO, 732 (1974);
S. Coleman, R. Jackiw, and L. Susskind, Ann. Phys. 93, 267 (1975). For a review of this last work see L. Susskind and J. Kogut, Phys. Reports 23C, 348 (1976).
11. There is an enormous amount of literature on the sine-Gordon theory. A good but limited set of references on the field theory aspects is contained in Fryhlich's Erice lectures (reference 3) while a good but again limited set of references to the classical and solitons espects is contained in reference 18.
12. S. Coleman, Phys. Rev. D11, 2088 (1975).
13. M. B. Halpern and P. Senjanovic, Phys. Rev. D25, 3629 (1977).
14. E. H. Hauge and P. C. Hemer, Physica Norvegica 5 , 209 (1971);
J. M. Kosterlitz and D. J. Thouless, J. Phys. C6, 1181 (1973);
J. M. Kosterlitz, J. Phys. C7, 1046 (1974); C. Deutsch and M. Lavard, Phys. Rev. A9, 2598 (1974).
15. S. Mandelstam, Phys. Rev. Dll, 3026 (1975).
16. A. Luther, Fhys. Rev. B14, 2153 (1976). Mass ratio's were first obtained using semiclassical techniques. See R. F. Dashen, B. Hasslacher, and A. Neveu, Phys. Rev. Ill, 3424 (1975). A review of this work is presented by R. Rajaraman, Phys. Reports 21C, 227 (1975).
17. A. C. Scott, F. Y. F. Chu, and D. W. McLaughiin, Proc. IEEE, Vol. 61, 1443 (1973).
18. I would like to thank K. Berdakci for this point.
19. I thank K. Bardakci for showing me this.
20. E. Brézin and J. Zinn-Justin, Phys. Rev. Lett. 36, 691 (1976); Phys. Rev. B14, 3110 (1976).
21. W. A. Bardeen, B. W. Lee, R. E. Shrock, Phys. Rev. D14, 985 (1976). 23. For similar results on the convergence of this theory see J. Frohlich's vork in references 3, 4, and 5.
22. C. G. Callan, R. Dashen, and D. J. Gross, Fhys. Lett. 66B, 37; (1977).
23. J. Frbhlich has proved that in such a case is a rigorously defined Wightman field. See references 3 and 4.
24. C. G. Cailan, R. Dashen, and D. J. Gross, Phys. Rev. D16, 2526 (1977).

Table 1: FEYMMAN GRAPH CORRESPONDENCE

Statistical Mechanics

Table 2: NOLATION TRINSIATION

Inverse			Dimensfon Factor
Reference	Tenijeratute	Acrivity	
This Papcr	B	λ_{0}, λ_{R}	a_{0}
J. Fröhlich (Ref. 5)	$\beta_{F}=\beta$	$\begin{aligned} & z_{p}=8 \lambda_{R} \pi B q^{2} \\ & \varepsilon_{F}=\sqrt{4 \pi} q \end{aligned}$	-
$\begin{aligned} & \text { Coleman } \\ & \text { (Ref. 13) } \end{aligned}$	$B_{C}=\sqrt{4 \pi \beta} q$	$\begin{aligned} & \alpha_{0}=8 \pi \lambda_{0} B q^{2} \\ & \alpha=8 i n \lambda_{R^{2}} 3 q^{2} \end{aligned}$	$\frac{1}{\sqrt{\mathrm{c}} \mu}$
Mandelstam (Ref 16)	$B_{M}=\sqrt{4 \pi B} q$	$\mu_{M}^{2}=8 \pi \lambda_{0} \hat{\beta} q^{2}$	$\frac{1}{C H}$
$\begin{aligned} & \text { Kosterlitz } \\ & \text { Thouless (Ref. 15) } \end{aligned}$	${ }^{B} \mathrm{~K} . \mathrm{T} .{ }^{=0}$	${ }^{\lambda} \mathrm{K} . \mathrm{T}$.	r_{0}
Hauge δ Hemmer (Ref. 15)	$\mathrm{BH.H.}^{=\beta}$	-	$L_{0}=1$
Luther (Ref. 17)	$\begin{gathered} \theta_{L}=\frac{1}{2} B q^{2} \\ -\pi\left(1-\frac{1}{2} B q^{2}\right) \\ B q^{2}\left(1-\frac{1}{2} B q^{2}\right) \end{gathered}$	-	-

NOTES TO TABLE 2

As previously show, a correct definition of the energy makes the theory independent of a_{0} even though the potential is $2 \ln \frac{r}{a_{0}}$. Varying the dimensional factor rederines the self-energy (and hence the activity) at the cost of redefining interparticle energies. This is done in such a way that the total energy remains unchanged.

The massive Thirring model, $\mathcal{X}=\bar{\psi}(\mathrm{i} ;-\mathrm{M}) \psi-1 / 2 \mathrm{~g}\left(\bar{\psi}^{\boldsymbol{\mu}} \psi\right)\left(\bar{\psi}_{\psi} \psi\right)$ is known ${ }^{13,16}$ to be equivalent to the sine-Gordon: $g=\left(\frac{1}{A Q^{2}}-1\right) \pi$ and $2 \lambda_{0} \cos \sqrt{4 \pi A} q X$ corresponds to $-M \bar{\psi} \psi$. M, a cuto』f dependent quantity (like λ_{o}) depends on how one renormalizes and thus may be chosen arbitrarily.

The $O(2)$ non-linear σ-model with linear symmetry breaking term,
$\mathcal{L}=\lim _{g^{+\infty}}\left\{1 / 2\left(a_{\mu} \sigma\right)\left(\partial^{\mu} \sigma\right)+1 / 2\left(\partial_{\mu} i\right)\left(\partial^{L} \pi\right)+2 a \sigma+g\left(\sigma^{2}+\Pi^{2}-f_{\pi}^{2}\right) \mid\right.$, is also equivalent to the sine-Gordon:

$$
f_{\Pi}=\frac{1}{\sqrt{4 \pi \beta} q} \text { and } a=\lambda_{0} \sqrt{\pi \beta} q .
$$

$\lambda_{K . T .}=e^{-2 B \mu_{K . T .}}$. Kosterlitz and Thouless interpret $\mu_{K . T .}$ as the energy required to create a plus-minus pair at a distance of their cutoff, r_{0}.

Hauge cad Hemmer deal with a partition function so that the activity never appears.

In Luther's paper the coupling constant corresponding to the activity comes in via the inverse lattice spacing.

(a)

(b)

FIGURE, 1. SONE FEYNMAN GRAPH COHMINATORIAL FACTORS. In (a) there are four lines connecting the two vertices. According to rule (e) there is a factor of $\frac{1}{4!}$. (b) is a threefold self energy tadpole. According to rule (r) there is a factor of $\frac{1}{3!} \frac{1}{2^{3}}$.

FIGURE 2. THE EFFECT OF SELF-FINERGY TADPO.NS. The bare veertex is replaced by a sum of terms, each one with an additional tadpole attached.

$$
\cdot+Q+\mathscr{Q}+\cdots=[\cdot]_{\text {RеповадL_zo }}
$$

FIGURE 3. THE DIAGRAMS OF ORDER λ_{0}.

FIGURE 4. THE DTAGRAMS OF ORDER $\lambda_{R}{ }^{2}$. The self-onergy tadpoles are dropped according to the modified (b) and (f) rule..

(a)
(b)

FIGURE 5. DIAGRAMS OF ORDER $\lambda_{R}{ }^{3}$. Diagrams of figure (a) have an even number of propagators between vertices, whereas (b) have only an odd number.

(a)

(b)

FIGURE 6. THREE POSSIBLE PHASE DIAGRAMS.

FIGURE 7. CONTRIBOTIONS TO THE TWO POINT FUNCIION. Although individual graphs are not divergent, the sum of these graphs pives a diverpent contribution to the two-point function when $\beta q^{2} \geq 1$.

FIGURE 8. MIMIMUM ENERGY COMFIGURATION.

FIGURE 9. LEADING CONTRIEUTIONS TO THE ENERGY OF A MINUS Charge.

Figure 10. an infaredm-Forbiddma diagram.

228

CHAPTER V

TOPOLOGICAL SYMMETRY BREAKDOWN AND QUARK CONFINEMENT

1. INTRODUCTION

In a recent paper ${ }^{1}$, 't Hooft has stressed the importance of the center of the group in non-abelian gauge theories. This has exposed new concepts and created new possibilities for quark confinement. The center of $\operatorname{SU}(\mathrm{N})$ is z_{N}, isomorphic to the set of integers, $0,1,2, \cdots, N-1$, under the operation of addition modulo N. z_{N}, with its finite number of elements and unusual modulo addition property, is a feature distinguishing non-abelian theories from abelian ones. It may be the crucial factor explaining why mon-abeiian theories confine though abelian theories do not. Instantons also differentiate $\operatorname{SU}(N)$ gauge theories. However, dilute instanton gases do not coi.fine and dense instanton gases are hard to handle. The runaway scale and density problem has made instanton calculations virtually impossible to do. There are now conflicting views ${ }^{2,3}$ on their relevance to physical processes, problems, and confinement. 't Hooft Z_{N} type excitations, on the other hand, have only been discussed in a formal manner. The calculations remain to be done and it is unknown whether they will encounter similar difficulties. Thus, this is an important area of research. This is what we will be discussing in this paper. In particular, we will show how some calculations, such as Wilson loop integrals, can be done in a manner similar to instanton ones. We will also discuss many physically interesting ideas although no computations will be done to surport them.

Unlike 't Hooft, who used a Hamiltonian approach, we shall use a Euclidean formulation. We find that the properties of ${ }^{3} \mathrm{~N}$ excitations are particularly simple from this point of view,
especially when considering Wilson loops, where the effect of the excitations is expressed in terms of linking numbers.

Although 't Hooft had suggested attacking the problem by going to a lattice and many people have begun considering Z_{N} lattice gauge theories ${ }^{4}$, we shall work in the continuum.
't Hooft discussed, in detail, but in a formal way, the nature of confinement in $2+1$ dimensions. Here is a review of how it works. One starts with an $\operatorname{SU}(N)$ gauge theory. Using a symmetry breaking Higgs potential. $\operatorname{SU}(\mathrm{N})$ is broken down to 2_{N}. Topological solitons can then occur. These are not so different from NielsenOlesen vortices ${ }^{5}$ except that the non-zero gauge potentials are proportional to λ^{8} (for example) in the $\operatorname{SU}(3)$ case and more Higgs fields are involved. Away from a Nielsen-Olesen vortex, field configurations look like a gauge transformation, $U(x)$, with $U(x)=\exp (i \phi)$, so that $A_{\nu}=-\frac{i}{e}\left[\partial_{\nu} U(x)\right] U^{-1}(x)$ and $\Phi(x)=U(x) F$ (see Sec. III for notation). Likewise, 't Hooft vortices are approximately singular gauge transformations, $U_{x_{0}}(x)$ (x_{0} is the location of the soliton and x is the pcint where the gauge transformation is applied). When $U_{x_{0}}(x)$ is written as $\exp \left[i \sum_{i=1}^{8} \alpha_{i}(x) \frac{\lambda_{i}}{2}\right]$, that is, the fundamental matrix representation is used, $U_{x_{0}}(x)$ has the property that when x encircles x_{0} and returns to $x, U_{x_{0}}(x)$ is an element of the center of the group. Such a transformetion is multivalued (and globally in-defined), however when written in the adjoint representation (for example), it becomes single-valued. In 't Hooft's model, gauge and Higgs fields are in the adjoint representation so that $U_{x_{0}}(x)$ is well-defined. If $\left\langle\Phi_{i}(x)\right\rangle=F_{i} \quad$ are a set of vacum
expectation values which minimize the Higgs potential, then the classical configuration for a 't Hooft Z_{N} soliton at x_{0} is $\left.\left.A_{i}=-\frac{i}{g} \right\rvert\, \partial_{\mu} U_{x_{0}}(x)\right] \quad U_{x_{0}}^{-1}(x)$ and $\Phi_{i}(x)=U_{x_{0}}(x) F_{i}$ far from the vortex. Of course, nearby the field configuration is non-trivial junt as in the Nielsen-Olesen case.

In $2+1$ dimensions the above solitons are particles with extended structure and non-zero form factors. They are stable for topological reasons and carry a topological conserved charge. Tins charge is governed by the group, Z_{N}, which means that charge is conserved modulo K so that, in principle, N charges may annihilatc. This Z_{X} group is completciy different from the one associated with the center of $\operatorname{SU}(\lambda)$ and should not be confused with jit. There are now two Z_{N} 's. The ore associated with the soiiton charge will be called topological Z_{i}. ' t Hooft argues that it may be possible that topological Z_{N} is spontaneously broken, a phenomenon we call topological symmetry breakdown. This is an interesting phase in which quark confinement occurs. The argument is as follows: lf topolngical Z_{N} is broken then there are N different kinds of vacuums characterized by their topological Z_{N} numbers (compare this to spontaneous symmetry breakdown of a $U(1)$ symmetry by a Higgs potential, where, instead, there is a continum (a circle) of vacums defined by the direction in which the Higgs field points). In general, at any instant in time, the physical vaculm will look like a collection of domains each characterized by its Z_{N} value. Separating these domains will be Bloch walls. They carry an energy per unit length and may be associated with a new quanta in the theory: closed strings.

When particles in the fundamental representation are introduced, 't Hooft argues that they will be confined. A ouark and an antiquark will have a Bloch-wall-like string between them. This will provide a linear confining potential. For $\operatorname{SU}(3)$ three strings may join so that baryons can consist of three confined quarks. This is 't Hooft's $2+1$ dimensional quark confinement scheme. He derived it using simple, physical, intuitive arguments.

Several questions are generated. First is how does one extend these notions to $3+1$ dimensions. Following the same line of reasoning there will be volumes of Z_{N} vacua (instead of areas) and closed surfaces separating them (instead of closed strings). Clearly closed surfaces are unable to interpolate between quarks and create a linear potential as in one lower dimension. For this reason 't Hooft conjectured that confinement in $3+1$ is different. Instead of proposing a confinement scheme, he settled for an operator algebra which allowed the determination of the different phases of the theory. One of the important results of our paper will be the extension of the $2+1$ dimensional scheme to $3+1$ dimensions. The reason we are able to do this is that in a Euclidean formulation of the $2+1$ dimensional model we find a slightly different picture of the confinement, which has a straightforward generalization to one higher dimension.

A second question is how does one do calculations. 't Hooft has used formal powerful arguments, but it remains an open problem as to how to do computations. Of particular interest is the coefficient in front of the linear potential and its companion, the slope parameter. More generally, how does one calculate in a
theory with topological symmetry breakdown? We are able to supply some of the answers. We treat the Nielsen-Olesen case in Sec. III and the 't Hooft model in Sec, IV. To do these calculations requires a new calculation method. We develop it in Sec. II. The problem is equivalent to treating a gas of closed loops. Similar problems arise in lattice field theories. Examples are the threedimensional $O(2)$ classical Heisenberg model and the four-dimensional abelian lattice gauge theory discussed by Banks, Myerson, and kogut ${ }^{\text {b }}$. These authors must deal with a gas of monopole loops. Our gas consists of Nielsen-Olesen or 't Hooft vortex loops. We treat such a system by developing a field theory to describe it. Very simple arguments then tell us about the quark-antiquak and threc quark potentials. Although our main interest is in topological symnetry breakdown and Wilson loop calculations, Sec. Il discusses several field theory phenomena in this new picture. These concepts are enumerated and briefly discussed.

A third question is what are the essential ingredients in 't Hooft's $2+1$ confinement scheme? Certainly topological symmetry breakdown is one of them but are there others? We find the answer is yes. Topological symmetry breakdown leads only to a logarithmic quark-antiquark potential unless another ingredient is also present. It is the monopole. The 't Hooft model t.as monopoles in it. They play an instrumental role in the quark confinement. Before topological symmetry breakdown, the monopoles are bound together in monopole-antimonopole pairs. These dipoles have little effect. Topological symmetry breakdown liberates these monopoles. They, in tum, confine charges in a
manner not so different from Polyakov ${ }^{7}$ and Mandelstam ${ }^{8}$. In Sec. VII, we relate these ideas to Mandelstam's quark confinement scheme. The ${ }^{2} \mathrm{~N}$ confinement in $3+1$ is practically the same as Mandelstam's. We consider this to be an important result: two seemingly different confinement schemes are, in fact, the same.

The remaining open problems and questions (and there are several) are presented at the end.
II. CLOSED LOOP GAS AS A FIELD THEORY

This section will relate a gas of closed continuous loops to a relavistic field theory ${ }^{9}$. Connections between statistical mechanics and field theory often prove useful ${ }^{10}$. We find this to be the case here and will use it to extract results in a physical and almost intuitive manner.

We shall proceed in steps. Note, first, however, that a continuous curve when broken into N segments, resembles a polymer with vertices acting as atoms and line segments acting as bonds (Fig. 1). Sometimes this analogy is useful. Consider an open macromolecule (or polymer) which goes from x_{0} to x_{N} via $x_{1}, x_{2}, \cdots, x_{N-1}$ (Fig. 1b). To enforce the condition that the curve be continuous, we demand that the $i^{\text {th }}$ atom be near its two neighbors. This can be done by requiring two neighboring atoms to be a distance E from each other, that is, the bonds have a fixed length, E . The total length is Ne. Allowing curves of different lengths means summing over N in the partition function. To make the model more physical, assume the atoms have a chemical potential, μ, and sinteract with a "strength" g to an external potential, $V(x)$. The grand partition function for
a macronolecule with ends fixed at x_{0} and $x_{f} \equiv x_{N}$ is

$$
\begin{align*}
z\left(x_{0}, x_{f}\right)= & \sum_{N=1}^{\infty} \exp (-B H N) z_{N}\left(x_{0}, x_{i}\right), \\
z_{N}\left(x_{0}, x_{f}\right)= & {\left[\prod_{i=1}^{N-1} \int d^{3} x_{i}\right]\left[\prod_{i=1}^{N} \frac{\delta\left(\left|x_{i}-x_{i-1}\right|-\varepsilon\right)}{4 \pi \varepsilon^{2}}\right] } \tag{2.1}\\
& \times \exp \left[-B \sum_{i=1}^{N} g V\left(x_{i}\right)\right] .
\end{align*}
$$

z_{i}, the partition function for a macromolecule with $N+1$ atoms and N bonds, is a summation (integration) over all positions of intermediate atoms weighted by Boltzmann factors, $\exp \left|-\operatorname{BgV}\left(\mathrm{x}_{\mathrm{i}}\right)\right|$, with the constraint (the delta functions) that bonds have length, ε. The factor, $\frac{1}{4 \pi \varepsilon^{2}}$, nomalizes this so that given the position of the $i^{\text {th }}$ atom, the integ:ation over the location of the $(i+1)^{\text {th }}$ atom is unity. Modification of this factor can always be absorbed in μ. As long as x_{f} and x_{o} are far apart and ε is small, the sum over N effectively begins with the enormous value, $\left.N_{o}=\frac{1_{f} x^{-} x_{0}}{\varepsilon} \right\rvert\,$. It does no narm to start the sum at $\mathrm{N}=1$.

Eventually, we will take ε to zero so as to recover continuous curves from segmented N-step ones. In this limit, ${ }^{2} \mathrm{~N}$ resembles a Feymman path integral. Path integrals have been widely used to account for the statistical properties of macromoleculesld We shall review this. As is common in statistical
mechanics, one must coarse-grain: write N as $n m$ with both n and m large, that is, break up the macromolecule into m units of n atoms. Consider the situation where ε is small, n is large, but $\sqrt{n} \varepsilon$ is also small. Then

$$
\prod_{i=v n}^{(v+1) n-1} \frac{1}{4 \pi \varepsilon^{2}} \delta\left(\left|x_{i}-x_{i-1}\right|-\varepsilon\right)^{\prime} \rightarrow\left(\frac{3}{2 \pi n \varepsilon^{2}}\right)^{3 / 2}
$$

$$
\begin{equation*}
x \exp \left[-\frac{3}{2 n \varepsilon^{2}}\left(x_{(v+1) n^{-}} x_{v n-1}\right)^{2}\right] \tag{2.2}
\end{equation*}
$$

In Eq. (2.2) $i=v n$ to $(v+1) n-1$ are the atcins in the $v^{\text {th }}$ unit. Equation (2.2) is true because the left hand side represents a random walk between $x_{v n-1}$ and $x_{(v+1) n}$ which by the Central Limit Theorem approaches a Gaussian. If $\sqrt{\mathrm{n}} \varepsilon$ is small compared to the distance over which $V(x)$ varies appreciably, then $V(x)$ may be ireated as a corstant in each unit. We otrajn

$$
\begin{align*}
& 2=\sum_{N=1}^{\infty}\left[\prod_{v=1}^{m-1} d^{3} x_{v}\right]\left[\left(\frac{3}{2 \pi n \varepsilon}\right)^{\frac{3 m}{2}} \exp \left\{-\frac{3}{2} \sum_{v=1}^{m} \frac{\left(x_{v}-x_{v-1}\right)^{2}}{n \varepsilon^{2}}\right\}\right] \\
& \times \exp \left[-B \sum_{v=1}^{m} n v\left(x_{v}\right)-B \sum_{v=1}^{m} n \nu\right] . \tag{2.3}
\end{align*}
$$

The x_{i}^{\prime} 's have been relabelled so that x_{v} is the average value of x in the $v^{\text {th }}$ cell. As ε goes to zero, Eq. (2.3) approaches
a Feyman integral. Using the variables

$$
\begin{align*}
& s \equiv \frac{n \varepsilon^{2} v}{6} \tag{2.4}\\
& \tau \equiv \frac{\varepsilon^{2} N}{6},
\end{align*}
$$

and the 'bare' mass and coupling defined by

$$
\begin{align*}
& m_{0}^{2}=\frac{6 \beta \mu}{\varepsilon 2}, \\
& g_{0}=\frac{6 \mathrm{~g}}{\varepsilon^{2}}, \tag{2.5}
\end{align*}
$$

Equation (2.3)'becomes

$$
z=\frac{6}{\varepsilon^{2}} \int_{0}^{\infty} d \tau \int_{x(U)=x_{0}}^{\infty} \exp \left[-\int_{0}^{\tau}\left(\frac{x^{2}(s)}{4}+m_{0}^{2}+B g_{0} V(x(s))\right) d s\right] .
$$

The sum over N has become an integral over τ.
Remarks: (a) A bond-vector field interaction of the form
$\sum_{i} q\left(x_{i}-x_{i-1}\right) H_{\mu}^{\mu}\left(\bar{x}_{i}\right)$ can also be considered $\quad\left(\bar{x}_{i} \equiv \frac{x_{i}+x_{i-1}}{2}\right.$ is the average value of x along the bond). The effect is to add a term $-e q \int_{0}^{\tau} \dot{x}_{\mu}(s) H^{\mu}(x(s)) d s$ to the action in Eq. (2.6).
(b) Equation (2.6) resembles the Green's functions which arise in a particle dymamics representation of a field theory ${ }^{12}$.
(c) The factor $\frac{6}{\varepsilon^{2}}$ can be removed by nomalizing Z appropriately (a sort of wave-function renormalization). In any case, physical quantiti es (averages) do not depend on the overall normalization of z.

Sumarizing, the Green's functions, $G\left(x_{f}, x_{0}\right)$, which appear in a particle dymamics representation of a field theory, correspond to the grand partition functions of polymers with ends at x_{f} and x_{0}. The sum is over all continuous paths of arbitrary shape and length. The mass squared is proportional to the chemical potential which must be appropriately scaled to obtain a continurm limit. Other inputs are (a) that $n \rightarrow$ large so that products of delta functions approach Gaussians, (b) that $\sqrt{\mathrm{n}} \mathrm{E}+0$ so that $\sum_{x_{i} \in \text { unit }} v\left(x_{i}\right)+n V(\bar{x})$, and (c) that $E \rightarrow 0$ so that segmented curves approach smooth ones.

Representations such as Eq. (2.6) are well known to chemical physicists ${ }^{11}$. Equation (2.6) is not a new result. We have rederived it as a warm-up for the next step: polymers in bulk. It is not hard to believe that a gas of polymers might be describable as a Euclidean field theory, and we shall show this. We have known about this correspondence for some time and have thought about using it to obtain field theory results as in reference 10. Until the present application, this analogy did not seem fruitful because a gas of closed loops is a complicated statistical system of which little is known. Fortunately, we shall not use the statistical
mechanics side of this analogy in an essential way.
Now consider closed polymers, obtained by setting $\mathrm{x}_{\mathrm{f}}=\mathrm{x}_{\mathrm{o}} \equiv \mathrm{x}$ in Eq.(2.6). Allowing loops to be located anywhe nessitates iftegrating over x. Therc is, hewever, an overccunting probicm. For a closed polymer of N atons, it is impossible to differentiate which atom was the starting point, that is, the B different starting points cannot be distinguished. For each confjguration that begins at x_{0}, traces an x-fold segmented path, and retams to x_{0}, there is one which begins at x_{i}, traces out the selfsume jath, and returns to x_{i}. Thus configurations are overcounted by a factor of λ. The partition function for a closed polymer of arbitrary length and location is

$$
\begin{equation*}
z=\int d^{3} x \sum_{N=1}^{\infty} \frac{1}{N} \exp \left[-\delta L L^{\prime}\right] Z_{N}(x, x), \tag{2.7}
\end{equation*}
$$

where F_{N} is giver in Eq. (2.1). Proceeding as before, we obtain

$$
\begin{equation*}
z=\int_{0}^{\infty} \frac{d \tau}{\tau} \int d^{3} x \int_{\substack{x(0)=x \\ x(\tau)=x}} \theta^{\prime} x \exp \left[-\int_{0}^{\tau}\left(\frac{x^{2}}{4}+m_{0}^{2}+B g_{0} v(x)\right) d s\right] . \tag{8}
\end{equation*}
$$

Finally, the grand partition function for the gas of loops is

$$
\begin{align*}
\bar{\partial} & =\sum_{M=0}^{\infty} \frac{1}{M!} 2^{M}=\exp 2 \\
& =Y_{i} \exp \left\{-\operatorname{tr} \ln \left[p^{2}+m_{o}^{2}+\beta g_{o} v\right]\right\} \tag{2.9}
\end{align*}
$$

(2.9) Continued on next page.

$$
=\pi \int / \gamma_{\phi} \exp \left\{-\int\left[\partial_{\mu} \phi \partial^{\mu} \phi(x)+m_{0}^{2} \Phi^{2}(x)+B g_{0} V(x) \phi^{2}(x)\right] d^{3} x\right\}
$$

7) is an overall (infinite) normalization constant. We have used $\int_{0}^{\infty} \frac{d \tau}{\tau}[\exp (-a \tau)-\exp (-b \tau)]=\int_{a}^{b} d z \int_{0}^{\infty} \exp (-z \tau) d \tau=-\ln \frac{a}{b}$. The ill-defined innocuous extra piece, $\exp \left[-\int d^{3} x \int_{0}^{\infty} \frac{d r}{\tau} \exp (-b \tau)\right]$ is $\rangle\left(\right.$. The operator, $i \partial_{\mu}$, is p_{μ} and ϕ is a scalar field. Remarks: (a) As usual, the infinity in r (is harmless since it devides out when calculating expectation values.
(b) For oriented curves (that is, curves with a direction for which curves of different direction are distinguishable)
a functional integral over a complex (charged) field is obtained. The orientation direction is identified with the flow of charge. In general, a gas of T different types of macromolecules leads to a T-component field.
(c) With oriented curves and a bond interaction, the action, $A=\int\left[\left|\left(\partial_{\mu}-i e A_{\mu}\right) \phi\right|^{2}+\pi_{0}^{2} \phi^{\star} \phi\right] d^{3} x \quad$ can be obtained.
(d) Interactions between atoms (and/or bonds) can be introduced using auxiliary fields. Suppose the interactions are of the form $\sum_{\substack{\text { all pairs } \\ \text { of atoms }}} g^{2} V\left(x_{i}, x_{j}\right)$. Define

$$
\int G(x, y) V(y, z) d^{3} y=\delta^{3}(x-y) \text {. Then }
$$

$$
\begin{align*}
& { }_{i}^{2}=\frac{1}{\iint G_{x} \exp \frac{8}{2} \int x(x) G(x, y) x(y) d^{3} x d^{3} y} \times \\
& \times \iint \alpha_{x} \int \mu_{\phi}^{\prime} \exp \left\{-\left\{\left[\partial_{\mu} \phi \partial_{\mu} \phi+m_{0}^{2}+B g_{o} x(x)\right] d^{3} x\right\}\right. \tag{2.10}\\
& \times \exp \left\{\begin{array}{l}
B \\
\angle
\end{array} \int x(x) G(x, y) x(y) d^{3} x d^{3} y\right\} .
\end{align*}
$$

This is verified by first doing the ϕ integration to yleld a gas of closed loops and then by doing the x integration.
(e) In particular, a ϕ^{4} theory corresponds to a repulsive interatomic delta function potential.
(f) Three dimensional scalar QED corresponds to a bondbond interaction of the form

$$
\begin{align*}
& \frac{e^{2}}{4 \pi \bar{\beta}} \sum_{\text {pairs of }} \frac{\vec{b} \cdot \vec{b}^{-}}{r_{b b^{-}}} . \tag{2.11}\\
& \text {bonds, } b \text { and } b
\end{align*}
$$

In Eq. (2.11) $\vec{b}=\vec{x}_{i+1}-\vec{x}_{i}$ is the bond vector between the i th and $(i+1)^{\text {th }}$ atoms, $r_{b b}$. is the distance between the two bonds, and the sum is over all pairs of bonds. The interaction is attractive for antiparallel bonds and repulsive for parallel ones.
(g) The Lagrangian, $\mathscr{O}=-\frac{1}{2}\left(a_{\mu} \phi\right)^{2}-\frac{1}{2} m_{0}^{2} \phi^{2}-\operatorname{gg}_{0} x \phi^{2}-\frac{B}{2}\left(a_{\mu} x\right)^{2}$
$-\frac{B m^{2} x^{2}}{2}$, corresponds to attractive interatomic Yukawa potentials.

When $m_{x}=0$, Coulomb interactions are obtained.
(h) The method works in any dimension, of course.
(i) Our method can be applied to obtain local field theories تər solitons ${ }^{9}, 13$. As reference 12 points out, perturbative expansion about vacum expectation values misses soliton solutions. These extr:: solitons carry topological charges which are conserved. They generate closed loops in the appropriate dimension, via a macromolecule analogy yield partition functioas similar to $Z_{N}(x, x)$ of Eq. (2.1) and Z of Eq. (2.7), and therefore result in a field theory. Of course, the solitons interact with the original fields. This can be taken into consideration using auxilary fields and Lagrange multipliers (as done in reference 13). The macromolecule technique would replace the left-hand-side of Eq. (3.3) of reference 13 by

$$
\begin{equation*}
\sum_{M=0}^{\infty} \frac{1}{M}: z^{M} \tag{2.12}
\end{equation*}
$$

with

$$
z=\int_{0}^{\infty} \frac{d \tau}{\tau} \int d x \iint_{\substack{x(0)=x \\ x(\tau)=x}} \mu^{\prime} x \exp \left[-\int_{0}^{\tau}\left(\frac{\dot{x}^{2(s)}}{4}+m_{0}^{2}+i Q_{\mu}(x(s)) \dot{x}^{\mu}(s)\right) d s\right] .
$$

This would provide an alternative derivation to the one of Appendix A of reference 13. Although the nommalization of delta functions in Eq. (2.1) is unknown and could generate an unknown
mass parameter, m_{0}^{2}, our intuitive feeling is that $m_{0}^{2}=0$, . although we cannot prove it. If it were non-zero, the measure factors in going to a sum over trajectories, would determine it in terms of the parameters in the original Lagrangian. One might think that m_{0}^{2} could be the missing factor cancelling self-energy infinitics found in reference 13 (Sec. IV), but we believe this is not the case. The infinities occur because near the soliton the Higgs field must go to zero. Expanding about non-zero Higgs field vacum expectation values cannot deal with such a constraint. Regardless, the mass, m_{0}, is geometrical in nature and has nothing to do with the soliton's physical mass.
(j) The chemical potential per atom and m_{o}^{2} are proportional. For $m_{0}^{2}<0$, the chemical potential is negative and lcops will populate the vacuum indefinitely. When a symmetry breaking potential is used, repulsive delta function potentials between atoms stabilize the proliferation of loops. Therefore, spontancuos symmetry breakdown looks like a dense gas of loops from the symmetric vacum point of view (the "spaghetti vacum").
(k) Renormalization infinities eccur because the macromolecule potentials corresponding to interacting relativistic field theories are singular. For example, a ϕ^{4} theory corresponds to repulsive delta function potentials between atoms. This extremely short-ranged singular potential consequently ruins the c oarse-graining procedure used in going from Eq. (2.1) to (2.6). It will no longer be true that these "random walks" approach Gaussian distributions. A ϕ^{4} theory is not so different from the
self-avoiding random walk pioblem ${ }^{11,14}$. The non-Gaussian nature of this process is well known ${ }^{14}$. This will lead to wave function and mass renomalizatior as perturbation theory tries to approximate non-Gaussian processes by Gaussian ones. The singular nature of potentials can also cause other problems. For attractive potentials, the interatomic forces might be too strong ('non-renomalizability') and cause macromolecules to collapse into 'balls of wire". Perturbation theory is insensitive to the sign of g and therefore such effects manifest themselves for repulsive potentials, also. The higher the dimension of space-time, the more singular the forces. This is why fewer renormalizable theories occur in higher dimensions.

III WILSON LOOPS IN THE PRESENCE OF TOPOLOGICAL VORTICES
This section will calculate the kilson loop in the presence of a gas of Nielsen-Olesen vortices ${ }^{5}$. The next section will treat 't Hooft Z_{3} vortices. These calculations are similar to instanton casculations, where multiple instanton configurations generate a gas. Various computational devices have put instanton calculations on a solid foundation ${ }^{7}$. Statistical mechanics and physical intuition determine their properties quite easily. This is how Callan, Dashen, and Gross ${ }^{2}$ are able to determine the magnetic properties of a dense BPST^{15} instanton gas. Contrast this with a vortex gas. The vortices may vary in number, position, and the way they are imbedded. They may twist in the most umruly manner. These complications lead one to think that such a system is too difficult to deal with, however, the methods of Section II make the problem tractable. We are able to do Wilson loop calculations. In fact, gases of vortices are as easy to
handle as gases of instantons. We will show how calculations involving topological spontaneous symnetry breaidown are done.

Take the Euclidean space version of the $2+1$ dimensional Nielsen-Olesen model ${ }^{5}$. This is scalar QED with a Higgs potential. The Lagrangian is

$$
\begin{equation*}
\mathscr{\sigma}=\frac{1}{4} F_{\mu \nu} \text { F }^{\mu \nu}+\left|\left(a_{\mu}-i e A_{\mu}\right) \Phi\right|^{2}+\lambda\left(\phi * \Phi-F^{2}\right)^{2}, \tag{3.1}
\end{equation*}
$$

and has vortex-like solutions along the third axis of the form

$$
\begin{align*}
& \Phi(x)=f(\rho) \exp (i \phi), \\
& A_{\phi}(x)=a(\rho), \tag{3.2}\\
& A_{z}(x)=A_{\rho}(x)=0 .
\end{align*}
$$

Cylindrical coordinates, p, z, ϕ, have been used. Graphs of $f(\rho)=|\Phi(\rho)|$ and $H_{z}(\rho)$ are given in Fig. 1 of reference 5. The important properties of the solution are
i) $\left(\Phi_{1}, \Phi_{2}\right)$ points radially outward from the vortex.
ii) $|\Phi(\rho)|$ vanishes at the vortex (at $\rho=0$) and goes to F far from it $(\rho=\infty)$.
iii) $a(\rho) \rightarrow \frac{1}{\mathbf{e} \rho}$ far from the vortex. This means that the vortex contains a tube of magnetic flux. The total flux is $\int d x d y H_{z}(x, y)=\int_{0}^{2 \pi} A_{\phi}(\rho) \rho d \phi=\frac{2 \pi}{e}$.

Property (i) is topological in nature and makes the soliton topologically stable.

Property (ii) has important implications (short-ranged ones and long-ranged ones). First, near the vortex where $|\phi(\rho)|=0$, the photon is effectively massless, whereas far away it has mass because the Higgs field has a vacuum expectation value. This is one way of understanding why flux is channelled into tubes. There is a tubular "mass confinement" bag. Also $|\phi(\rho=0)|=0$ indicates symmetry restoration in the vortex, a point which we shall discuss in detail later. Finally, we should mention that the Higgs field prevents the vortex from collapsing to zero size and gives it a finite mass. Secondly, the Higgs field at infinity must take on vacum expectation values and be covariantly constant. The latter means that $A_{\phi}(\rho)$ is determined in terms of the phase, x, of the Higgs field. A_{μ} is pure gauge and $x(x)-x(y)=e \int_{x}^{y} A_{\mu} d x^{\mu}$. Whenever y loops around a circle and returns to x the phase, x, must be an integral multiple of 2π. This causes the flux to be quantized. We shall return to this point in Sec. VIll.

Property (iii) contains the physics: the vortices are quantized tubes of magnetic flux. This is the key physical characteristic.

The vortex soliton has a topological number, which can be seen in two ways: using gauge potentials or using Higgs fields ${ }^{16}$. Of course, the two are interrelated. In terms of A_{μ}, consider $\exp \left[\mathrm{ie} \int_{\mathrm{x}}^{\mathrm{y}}{ }_{A} \cdot \mathrm{dx}\right]$. Such a pure phase takes values on the unit circle in the complex plane. Fix x and move y around the vortex
as in Fig. 2. In regions where A_{A} is pure gauge and the Higgs field is covariantly constant, $\exp \left[i e \int_{x}^{y} A \cdot d x\right]$ must return to l when y returns to x. This forms a map from a circle in Euclidean space to the unit complex circle. These maps are characterized by winding numbers, $\pi_{l}\left(S^{1}\right)=z$, the set of integers. Winding numbers count the number of times the image curve loops around the unit circle. Regions of space with $\pi_{1}=1$ or $\pi_{1}=-1$ contain a vortex or an antivortex.

In terms of the Higgs field the topology is as follows: far awiay $|\Phi|$ must be F, that is, $\Phi(x)$ must take on values which minimize the potential, $\lambda\left(\$ * \Phi-F^{2}\right)^{2}$; they form a circle of minima. Again consider moving y around a closed curved (Fig. 2). Then $\Phi(y)$ forms a map from a circle in Euclidean space to a circle (of minima). Again these maps are characterized by $\pi_{1}\left(S^{l}\right)=Z$.

Because winding number is invariant under continuous deformations (homotopies), winding number can neither be created nor destroyed unless an (unallowed?) discontinuity occurs in field configuration. This provides the topological stability of the vortices.

In three dimensional space-time, orient the vortex lines. The orientation indicates the direction of the flux and the flow of topological charge. In this way antivortices act like particles travelling backward in time. Of course, vortices need not be straight lines. In general, they twist and curve in an arbitrary manner. Since they may never end, they form closed loops. If they have a positive mass, these loops will be reqll, will act
like neutral objects, and will have few physical consequences. In contrast, when their mass is negative, they fill up the vaucuum and their effects can be dramatic.

Having reviewed the properties of Nielsen-Olesen vortices, let us put a Wilson loop (with an arbitrary charge, q) in the system (see Fig. 3a):

$$
\begin{equation*}
\left\langle\exp \left[i q \oint_{\square} A \cdot d y\right]\right\rangle \quad . \tag{3.3}
\end{equation*}
$$

Consider a single vortex. What is its effect? Using Stoke's theorem (or simply physical intuition), one sees that the Wilson loop measures the linking number ${ }^{17}$ of the two curves. If the vortex links n times the contribution is $\exp \left(i \frac{2 \pi}{e} q n\right.$). Examples with $n=+1$, -1 , and +2 are shown in Figs. 3b, 3c, and 3d. For several vortices the contribution is $\exp \left|i \frac{2 \pi q}{e}\left(n_{+}-n_{-}\right)\right|$, where n_{+}and n_{-}are the number of positive and negative linkages. Idealize the situation to the case where vortices are thin (trace out curves rather than tubes) and are not mutually interacting. This car be rectified if the form of the interactiors is known. For sinplicity set the mass equal to zero. In the end, we will restore a non-zero mass. The linking number of two curves can be expressed as an jntegral ${ }^{17}$:

$$
\begin{equation*}
n=-\frac{1}{4 \pi} \int_{G} d \vec{x} \cdot \int_{C} \frac{(\vec{x}-\vec{y}) \times d \vec{y}}{|x-y|^{3}} . \tag{3.4}
\end{equation*}
$$

Here, n is the number of times C_{1} and C link. For several curves the total linking number with C is

$$
\begin{equation*}
n=\sum_{i}-\frac{1}{4 \pi} \int_{C_{i}} d \vec{x}_{i} \cdot \int_{C} \frac{\left(\vec{x}_{i}-\vec{y}\right) \times d \vec{y}}{\left|x_{i} \cdot y\right|^{3}}=\sum_{i} \int_{C_{i}} d \vec{x}_{i} \cdot \vec{B}\left(x_{i}\right) \tag{3.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\vec{B}(\vec{x})=-\frac{1}{4 \pi} \int_{C} \frac{(\vec{x}-\vec{y}) \times d \vec{y}}{|x-y|^{3}} . \tag{3.6}
\end{equation*}
$$

Note that $B(x)$ has the same form as the magnetic field produced by w current flowing in C. Take C to be the Wilson lop and think of the C_{i} as vortex loops. Using the metrod of Sec. II, the calculation of (3.3) in a gas of idealized Nielsen-Olesen vortices is
$\langle\exp [i q \oint A \cdot d y]\rangle=$

$$
\begin{align*}
& \sum_{M=0}^{\infty} \cdot \frac{1}{M!} \prod_{i=1}^{M}\left[\int_{0}^{\infty} \frac{d \tau_{i}}{\tau_{i}} \int_{i} \int_{x^{i}(0)=x_{i}} \theta_{x}^{i} x\right. \\
& x^{i}\left(\tau_{i}\right)=x_{i} \\
& \left.\quad \times \exp \left\{-\int_{0}^{i}\left(\frac{\left(\dot{x}^{i}\right)^{2}}{4}+\frac{2 \pi i q}{e} B^{\mu}\left(x^{i}\right) x_{\mu}^{i}\right) d s^{i}\right\}\right] \tag{3.7}
\end{align*}
$$

(3.7) continued on next page
$\left.\times \frac{1}{\mid \text { same term with } B_{\mu}=0} \right\rvert\,$

$$
=\frac{\int f \psi \exp \left\{-\int\left|\left(a_{\mu}-\frac{i 2 \pi q}{e} B_{\mu}\right) \psi\right|^{2}\right\}}{\mid \text { same term with } B_{\mu}=0 \mid} .
$$

If the vortices interact and have a mass Eq. (3.7) would be replaced by

$$
\begin{equation*}
\frac{\iint_{H}^{\prime} \psi \text { exp }}{\left\{\frac{\left\{\left(\left\lvert\,\left(\partial_{\mu}-\frac{i 2 \pi q}{e} B_{\psi}|\psi|^{2}+m^{2} \psi^{\star} \psi+\mathcal{P}^{(}\left(\psi^{\star} \psi\right)\right.\right.\right.\right.}{\text { same term with } \left.B_{\mu}=0\right]}\right\}} \tag{3.8}
\end{equation*}
$$

$\int l^{\prime \prime}\left(\psi^{*} \psi\right)$ might be, for exampıe, $\int d^{3} x \int d^{3} y w^{*}(x) \psi(x) \frac{\exp [-\mu \mid x-y]]}{4 \pi|x-y|}$ $x \psi^{*}(y) \psi(y)$. This would correspond to a Yukawa interaction between points on the vortex. In anycase formst be a functional of $\psi^{\star}(x) \psi(x)$ only. Given the interactions and mass of vortices, the exact form of Eq . (3.8) can be determined. In principle, m^{2} and $\hat{V}^{E}\left(\psi^{\star} \psi\right)$ may be approximately deduced using semiclassical methods or perhaps by examining the Lagrangians of reference 13 in more detail.

Of course ψ is the vortex field. In fact, inserting $\psi^{*}(x) \psi(y)$ in the integrani $\quad f_{f}$ Eq. (3.8) (with $B_{\mu}=0$ so that the Wilson loop is absent) and returning to a macromolecule description, one obtains a gas of closed vortices in the presence of one open one which starts at x and ends at y. Hence, $\psi^{\star}(x)$ produces the vortex endpoint at x and $\psi(y)$. destroys it at y. Regardless of the detailed nature of $-\sqrt{ }\left(\psi^{\star} \psi\right)$, we can evaluated Eq. (3.8) semiclassically for various cases. i) When
$m^{2}>0, \psi=0$ is expected to be the vacum. This is also the solution to the equations of motion for a non-zero B_{μ} and the Wilson loop to this approximation is 1 . Vortices do not contribute to the Wilson loop as expected. This is because for $m^{2}>0$ the vortices are small loops and rarely link with the Kilson loop. ii) When $m^{2}<0$, these is topological symmetry breakdown in topological charge. The vacuum fills up with vortices. Presumably : ${ }^{\prime \prime}\left(\psi^{*}{ }^{*}\right)$ contains repulsive forces which eventually stabilize the proliferation of loops (an example is : $\left(\psi^{*} \psi\right)=g \psi^{*} \psi \psi^{*} \psi$ which corresponds to repulsive delta function forces between points on vortices). ψ then acquires a vacum expectation value, $\langle\psi\rangle=\psi_{0}$. Because the (denominator) Lagrangian of Eq. (3.8) is a function of $\psi^{*} \dot{\psi}(x), \psi_{o} \exp (i \theta)$ for $0 \leq \theta<2 \pi$ are also action minima. Consider a long rectangular Wilson loop of width, r, and length, t (Fig. 3a). Trying $\psi=\psi_{0}$ as a trial solution yields

$$
\begin{equation*}
\left\langle\exp \left[i q \oint_{A} \cdot d y\right]\right\rangle \sim \exp \left[-\left(\frac{2 \pi q}{e}\right)^{2} \int d^{3} x B^{2}(x)\right] . \tag{3.9}
\end{equation*}
$$

$B(x)$ is given in Eq. (3.6) and is the magnetic field created by two parallel wires with opposite current flowing through them. The evaluation of Eq . (3.9) is a problem of undergraduate electromagnetism ${ }^{18}$: $\int d^{3} x B^{2} \sim\left(\frac{1}{4 \pi}\right)^{2} 2 t \ln \left(r / r_{0}\right)$. The constant r_{o} should be of the order of the vortex width, since thick vortices can partially intersect a Wilson loop and our idealized approximation breaks down. For $\frac{q}{e}$ greater than 1 , we can find screening type solutions which better minimize the action. Let m be the
nearest integer to $\frac{q}{E}$ and set $\Delta q=m-\frac{q}{e}$. Let

$$
\begin{align*}
& \psi(x)=\exp |i x(x)| \psi_{0}, \\
& x(x) \equiv m\left\{\tan ^{-1}\left|\frac{x-x_{1}}{y-y_{1}}\right|-\tan ^{-1}\left|\frac{x-x_{2}}{y-y_{2}}\right|\right\}, \tag{3.10}
\end{align*}
$$

where $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are the (x, v) coordinates of the two lines comprising the Wilson loop. In Eq. (3.10) m nust be integer-valued so that $x(x)$ is single-valued when circling around $\left(x_{1}, y_{1}\right)$ or $\left(x_{2}, y_{z}\right)$. We obtain

$$
\begin{equation*}
\left.\langle\exp | i q f a n \cdot d y\rangle \sim \exp |-\frac{(\Delta q)^{2}}{2} t \ln \frac{r}{r_{0}}\right] . \tag{3.11}
\end{equation*}
$$

We expect Eq. (3.10) to be approximateiy the correct solution for arbitrary $V_{\left(\psi^{*} \psi\right) \text {. Only an attactive singular potential could }}$ cause the vortices to form neutral bound objects and ruin the picture. Our result is obtained in an almost model independent manner.

The Wilson loop test is sensitive only to the excess charge. This is the ommipresent periodic (in q) screening effect which occurs when the potential is due to topological configurations.

Equation (3.11) indicates a logarithnic potential between charges because of topological symnetry breakdown. Before ψ had acquired a vacunm expectation value, there was no logarithmic potential due to the photon because the Higgs mechanism had given the photon a mass. Spontaneous symmetry breakdown has restored
a two dimensional Coulomb-like force.
In addition to this topological non-perturbative ln r potential, we expect the perturbative ℓn r potential of the umbroken $U(1)$ gauge theory to be present also: Recall property (ii) of the Nielsen-Olesen vortex, that Φ, the charged scalar field, must vanish at the vortex. Along the vortex the photon is "massless" in contrast to outside the vortex where it has mass. When topological symnetry breakdown occurs the vacula is filled with vortices until repulsive forces take over. Presumably this occurs when they begin to overlap. This means that $\langle\Phi(x)\rangle$ must be zero since vortices occupy all of space-time. The photon must be massless, since $\langle\Phi(x)\rangle \neq 0$ was the factor contributing to its mass. The original $v(1)$ charge symmetry is restored and another perturbative $\ln \mathrm{r}$ potential due to the photon is expected. The sequel is depicted in Fig. 4.

$$
\text { SECTION IV } z_{\mathrm{N}} \text { VORTICES }
$$

We will now consider 't Hooft vortices. We will proceed in a manner similar to Sec III: first reviewing the solitor solutions and their properties and then performing the Wilson loop calculation. The topology ${ }^{16}$ of an $\operatorname{SU}(\mathrm{N})$ vortex is most easily discussed for $N=2$. For this case, a possible Lagrangian is

$$
\mathscr{D}=\frac{1}{4} F_{\mu \nu}^{2}+\frac{1}{2}\left|\left(a_{\mu}-i g A_{\mu}^{a_{L}}{ }^{a}\right) \Phi_{(1)}\right|^{2}+\frac{1}{2}\left|\left(\partial_{\mu}-i g A_{\mu}^{a_{L}}{ }^{a}\right) \Phi_{(2)}\right|^{2}
$$

$$
\begin{equation*}
+v\left(\Phi_{(1)}, \Phi_{(2)}\right), \tag{4.1}
\end{equation*}
$$

where

$$
V\left(\Phi_{(1)}, \phi_{(2)}\right)=\lambda_{1}\left(\Phi_{(1)}^{2}-F_{(1)}^{2}\right)^{2}+\lambda_{2}\left(\varphi_{(2)}^{2}-F_{(2)}^{2}\right)^{2}
$$

$\Phi_{(1)}, \Phi_{(2)}$ are two $\operatorname{SU}(2)$ triplet Higgs fields, L^{a} are the 3×3 SU(2) matrix generators, and $\lambda_{1}, \lambda_{2}, \lambda_{3}, F_{(1)}$, and $F_{(2)}$ are constants. Other Higgs potentials will also work.

Because all fields are in the adjcint representation, the symmetry of this model is $\operatorname{SU}(2) / z_{2}$ or $O(3)$. The Higgs potential breaks this symmetry completely, so that all three gauge fields acquire mass. The remaining bosonic excitations are also massive. From this point of view, there can be no long range forces.

As in the Nielsen-Olesen case, there are two types of topological numbers, one related to Higgs fields, the other connected with gauge fields. The solitons have both types.

Consider a static vortex at $x=y=0$ (Fig. 2). Go far from it and circulate around it. The Higgs fields must take on vacuum expeciation values. In going around the circle, these values trace out a curve in the minima, M, of the Higgs potential. Such curves are characterized by $\pi_{1}(M)$. Are there curves in M not deformable to a point for the V in Eq. (4.2)? M is the set of pairs of three dimensional vectors, $v_{(1)} \equiv \Phi_{(1)} / F_{(1)}$ and $v_{(2)} \equiv \Phi_{(2)} / F_{(2)}$ satisfying $v_{(1)} \cdot v_{(1)} \cdot v_{(2)} \cdot v_{(2)}^{=1,} v_{(1)} \cdot v_{(2)}=0$. If we append
the vector $v_{(3)}=v_{(1)} \times v_{(2)}$, an orthonomal frame is obrained. Therefore, M is the set of orientations of this frame. Fix a reference frame $v_{(1)}^{0}=(1,0,0),, v_{(2)}^{0}=(0,1,0), v_{(3)}^{0}=(0,0,1)$. An arbitrary frame is determined by an $O(3)$ rotation of this reference frame. Therefore, M is the set of orthogonal tranformations. Characterize the rotation a la Schiff ${ }^{19}$ by a vector in the direction of the rotation whose magnitude is the angle of rotation. M becomes isomorphic to the solid three-dimensional sphere with antipodal points identified. This space has curves which cannot be deformed to a point (see Fig. 5). However, a path which goes twice along the route of Fig. 5 can be deformed to a point (see Fig.6). Physically this is demonstrated in M.T.W. ${ }^{20}$. The fundamental group, $\pi_{1}(M)$, is Z_{2}, and this characterizes the vortex. The vortices carry a topological charge conserved modulo two. Again do not confuse this Z_{2} with the center of $\operatorname{SU}(2)$. This is another Z_{2}, topological in nature. Typical non-trivial Higgs configurations are shown in Fig. 7.

The topological number associated with the gauge field is similar to the Nielsen-Olesen case. Let $A_{\mu}=A_{\mu}^{a} L^{a}$, where L^{a} are the 3×3 "angular momentum" matrices. $\left|P \exp : \operatorname{ig} \oint_{x}^{y} A_{\mu} \cdot d x^{\mu}\right|_{\alpha \beta}$ is the path ordered product from x to y. As y goes around the circle and back to the starting point, x , (Fig. 2), this matrix traces a curve in $0(3)$. Because we are far away, in the region where the Higgs fields are covariantly constant, this matrix is precisely the $O(3)$ rotation that takes the Higgs frame at x to the Higgs frame at y. Again a closed
curved in $O(3)$ is obtained which begins and ends at the identity element. Again z_{2} characterizes the topological charge.

Letting $A_{\mu}=\frac{\tau^{a}}{2} A_{\mu}^{a}$ with $\frac{\tau^{a}}{2}$, the Pauli matrices:

$$
\begin{equation*}
\left|F \operatorname{exI}\left(\mathrm{ig} \oint A_{\mu} \cdot \mathrm{dx}{ }^{\mu}\right)\right|_{\alpha \beta}=-\delta_{\alpha \beta}, \tag{4.3}
\end{equation*}
$$

for a gauge field vortex. The line integral is aroura a circle containing the vortex.

The important local properties of the vortex are
(i) $\Phi_{(1)}$ and $\Phi_{(2)}$ become parallel at the vortex (Fig. 7c) so that the frame becomes ill-defined ${ }^{21}$.
(ii) For point-like vortices and A_{μ}^{l} not varying rapidly in SU(2) space (as the vortex is approached, we expect A_{μ}^{ℓ} to go to zero rapidly but do not expect the color direction to vary rapidly), there is a delta-function-like contribution to the flux in the direction of $\operatorname{SU}(2)$ space parallel to $\Phi_{(1)}$ and $\Phi_{(2)}$:

$$
\begin{equation*}
\hat{\Phi}_{(1)}^{l} \cdot F_{12}^{\ell}(x, y)=\hat{\Phi}_{(2)}^{l} \cdot F_{12}^{l}(x, y)-\frac{2 \pi}{g} \delta(x) \delta(y) . \tag{4.4}
\end{equation*}
$$

For $\operatorname{SU}(N)$ we expect the following to be true:
(a) The Higgs potential is chosen to break the symmetry completely. The Higgs fields are in the adjoint representation.

For $\operatorname{SU}(3)$ two Highs fields are sufficient ${ }^{22}$. Let $\Phi_{(i)}^{0}$ be the vacuum expectation value of the $i^{\text {th }}$ Higgs field. Let $v_{(i)}=L^{\ell} \phi_{(i)}^{o l} / F_{(i)}$, where L^{ℓ} are the Lie algebra adjoint matrices of $S U(N)$. The symmetry is completely broken if for any n^{l}, $\left[r^{\ell} \cdot L^{\ell}, v_{(i)}\right] \neq 0$ for some i.
(b) Vortices are characterized by $\pi_{1}\left(S U(N) / z_{N}\right) \approx z_{N}$.
(c) Define $v_{(i)}(x)=\hat{\Phi}_{(i)}^{\ell}(x) L^{\ell}$. The "hat" over $\Phi_{(i)}$
indicates that it is normalized to 1 , so that

$$
\hat{\Phi}_{(i)}(x)=\phi_{(i)}(x) /\left[\phi_{(i)}^{\ell}(x) \Phi_{(i)}^{\ell}(x)\right]^{1 / 2} .
$$

Then at the vortex, there is at least one η^{2} such that $\left.n^{\ell} \cdot L^{\ell}, v_{(i)}(x)\right]=0$ for all i, where x is the location of the vortex. Let it be the set of vectors, n, such that $\left[\eta^{\ell} \cdot L^{\ell}, v_{(i)}(x)\right]=0$ for all i. Then $a n_{1}+b n_{2}$ is in - and $\left[n_{1}, n_{2}\right]$ is in , if n_{1} and n_{2} are in - . The later is true because $\left[\left[n_{1}, n_{2}\right], v_{(i)}(x)\right]=-\left[\left[n_{2}, v_{(i)}(x)\right], n_{1}\right]$ $-\left[\left[v_{(i)}(x), n_{1}\right], n_{2}\right]=0$. The set of matrices $n^{\ell} \cdot L^{\ell}$ for $n \in, F$ forms a Lie subalgebra which generates a subgroup, H, of $\operatorname{SU}(\mathrm{N})$.
(d) We expect that only one n^{ℓ} occurs, so that F^{f} is one dimensional and $H=U(1)$ (in $S U(3)$, for example, the two Highs fields might point in the $\frac{\tau^{2}}{2}$ and $\frac{\tau^{3}}{2}$ directions so that only one n occurs and $\eta^{\ell}=\delta^{\ell 8}$). Furthermore $n^{\ell} \cdot \frac{\lambda^{\ell}}{2}$ has $N-1$ eigenvectors with eigenvalue $\frac{1}{N}$ and one eigenvector of eigenvalue $\frac{N-1}{N}$ when $n^{\ell} \cdot n^{\ell}=\frac{2(N-1)}{N}$ and $\frac{\lambda^{\ell}}{2}$ are the fundamental matrix representation normalized so that $\operatorname{tr} \frac{\lambda^{\ell}}{2} \frac{\lambda^{m}}{2}=\frac{\delta^{\ell m}}{2}$. For $\operatorname{SU}(3)$ we
believe the set of η^{ℓ} satisfying this condition is of the form, $\eta \cdot \frac{\lambda}{2}=\exp \left(i \alpha \cdot \frac{\lambda}{2}\right) \frac{2}{\sqrt{3}} \frac{\lambda}{}_{\frac{8}{2}} \exp \left(-i \alpha \cdot \frac{\lambda}{2}\right)$, for eight vectors, α. (e) There is a delta-function-1ike contribution to the flux of the form

$$
\begin{equation*}
\eta^{\ell} \cdot F_{12}^{\ell}(x)-\frac{2 \pi}{g} \delta(x) \delta(y), \tag{4.5}
\end{equation*}
$$

when n^{ℓ} is normalized so that $n^{\ell} \cdot \eta^{\ell}=\frac{N}{2(N-1)}$.
(f) When more than one n^{ℓ} occurs, the flux might rapidly fluctuate along the vortex in different color directions. Such fluctuations may be the color zitterbewegung phenomenon ${ }^{23}$ associated with particles carrying an internal symmetry. There is the speculative possibility that the particles associated with such trajectories are non-abelian ones and the fields related to them form a representation of H. This is highly conjectural and probably impossible to prove. This is a quantum mechanical effect. in this way a dual gauge group may be generated ${ }^{24}$. See also reference 21 .
(g) That the flux must be in the subgroup, H, is reasonable physically. At the vortex gluonic excitations associated with H are massless, because the symmetry, H, is restored. Outside, these same fields are massive. This is a sort of tubular bag-like mass confinement mechanism of field strengths. They are restricted to the massless regions of space, i.e. the vortices. The important point is vortices carry tubes of magnetic flux in the group, H.

For the rest of this paper, we will restrict ourselves to the relevant case of $\operatorname{SU}(3)$. Let us repeat the calculation of the last section for $\operatorname{SU}(3)$. Idealize to zero width vertices. The topological charge is conserved mod. 3. Thus, there are two nontrivial types of vertices. One is characterized by $\operatorname{tr}[F \exp (i g \phi / A \cdot d \ell)]=3 \exp \left(\frac{2 \pi i}{3}\right)$, the other by $\operatorname{tr}[P \exp$ (in faA $A \cdot d \ell]=3 \exp \left(\frac{-2 \pi i}{3}\right)_{l}$ (we are now dotting A_{μ}^{l} into the fundamental representation, $\frac{\lambda^{\ell}}{2}$, the 3×3 matrices). The path in the path ordered product is to be taken around the vortex. The 3's in the above equations are trace factors and get replaced by N for $S U(N)$. Again, vertices will trace out particle trajectories in three dimensional Euclidean space. If we assign orientations, then oppositely oriented vortices carry opposite units of flux and may be regarded as antiparticles. The vacuum will be a gas of them. If they have a positive mass they will be small and sparsely located. If they have a negative mass they will fill up the vacuum. The calculation of the Wilson loop in the presence of these vertices proceeds as in Sec. III, except that $q=\frac{g}{3}$. The result is

$$
\begin{gather*}
\left\langle\operatorname{tr}\left[P \exp \left(\operatorname{ig} \not \mathcal{A A}_{A} \cdot \mathrm{dx}\right)\right]\right\rangle \sim \\
3 \frac{\int\left\{R_{\psi \exp }\left\{-\int \mathrm{d}^{3} x\left[\left|\left(\partial_{\mu}-\frac{2 \pi i}{3} \mathrm{~B}_{\mu}\right) \psi\right|^{2}+\mathrm{m}^{2} \psi^{*} \psi+V_{\left(\psi^{*} \psi\right)}\right]\right\}\right.}{\left[\text { same as numerator with } \mathrm{B}_{\mu}=0\right]} \tag{4.6}
\end{gather*}
$$

The function, B_{μ}, is given in Eq. (3.6). We have allowed for a mass and for interactions. In principle, these are determined from the original Lagrangian (Eq. (4.1) for $S U(2)$). Again semiclassical methods and/or local field theory soliton methods ${ }^{13,21}$ should be helpful in this respect. The only input in Eq. (4.6) is the conmutation relations of vortex fields and Wilson loops which in Euclidean formulation become linking numbers. The factor of 3 is due to color.

The solutions and conclusions are the same as in the Nielsen-Olesen case. There is no long-range potential unless topological symmetry breakdown takes place, in which case the potential is a logarithm. We conclude that topological symmety breakdown of 2 N vortex loops is not enough to give a linearly confining potential.

The above calculation considered only closed loops and did not allow for the possibility that three flux tubes could annihilate. Charge conservation, being modulo three, permits such events. Whether it actually happens is a question which can only be answered by finding the effective soliton Lagrangian. It may be that these events occur with zero probability. This question must be answered by doing the proper analysis of the original Lagrangian (the $\operatorname{SU}(3)$ analog of Eq. (4.1)). No arbitrariness is involved. Let us redo the Wilson loop calculation making the ad hoc assumption that three vortices can annihilate. Configurations such as Fig. 8a as well as more complicated ones (Fig. 8c) are allowed. We shall call these configurations triplets. As indicated by t^{\prime} Hooft they may be generated by adding a term, $\lambda_{0}\left(\psi^{3}+\psi^{4^{3}}\right)$, to the Lagrangian of Eq. $(4.6)^{25}$:

$$
\begin{equation*}
\mathcal{L}=\left|\partial_{\mu} \psi\right|^{2}+m^{2} \psi^{\star} \psi+V_{\left(\psi^{\star} \psi\right)}+\frac{\lambda_{o}}{3!}\left(\psi^{3}+\psi^{\star^{3}}\right) . \tag{4.7}
\end{equation*}
$$

This is seen by doing perturbation theory in λ_{0} : zero'th order in λ_{0} is equivalent to our previous gas of interacting loops. Second order (there are no first order terms) in λ_{o} produces the configurations of Fig. 8a. Higher order terms yield a gas of those Fig. $8 c$ as well as more complicated ones. Consider the second order tem from the macromolecule point of view. Neglect interactions (i.e. set $\mathscr{V}^{(}\left(\psi^{\star} \psi\right)=0$) for simplicity.

$$
\begin{align*}
& \vec{\partial}=\eta \iint D^{\prime} \psi \mu^{*} \psi^{*} \exp \left[-\int\left(\partial_{\mu} \psi^{\mu} \psi^{*}+m_{0}^{2} \psi^{*} \psi+\frac{\lambda_{0}}{3!}\left(\psi^{3}+\psi^{\star^{3}}\right)\right]=\right. \\
& \therefore 0\left[1+\frac{\lambda_{0}^{2}}{3!} \int d^{3} x_{0} \int d^{3} x_{f} \int_{0}^{\infty} d \tau_{1} \int_{0}^{\infty} d \tau_{2} \int_{0}^{\infty} d \tau_{3}\right. \\
& x \iint x_{(1)} \quad \iint N_{(2)} \quad \int \sigma^{\prime} x_{(3)} \\
& x_{(1)}(0)=x_{0} \quad x_{(2)}(0)=x_{0} \quad x_{(3)}(0)=x_{0} \\
& x_{(1)}\left(\tau_{1}\right)=x_{f} \quad x_{(2)}\left(\tau_{2}\right)=x_{f} \quad x_{(3)}\left(\tau_{3}\right)=x_{f} \\
& \times \exp \left\{\left.-\int_{0}^{\tau}\left[\frac{\dot{x}_{(1)}^{2}}{4}+m_{0}^{2}\right]-\int_{0}^{\tau}\left[\frac{\dot{x}_{(2)}^{2}}{4}+m_{0}^{2}\right]-\int_{0}^{T}\left[\frac{\dot{x}_{(j)}^{2}}{4}+m_{0}^{2}\right] \right\rvert\,\right. \\
& \left.+0\left(\lambda_{0}^{4}\right)\right] \tag{4.8}
\end{align*}
$$

Equation (4.8) continued on next page.

$$
\left.=\partial_{0} 1+\frac{\lambda_{0}^{2}}{3!\varepsilon^{3}}\left(\frac{1}{6}\right)^{3} \int d^{3} x_{0} \int d^{3} x_{f} z_{p}+0\left(\lambda_{0}^{4}\right)\right]
$$

where

$$
\begin{aligned}
& \times\left[\prod_{i_{2}=1}^{N_{2}-1} \int d^{3} x_{i_{2}}^{(2)}\right]\left[\prod_{i_{2}=1}^{N_{2}} \frac{\delta\left(\left|x_{i}^{(2)}-x_{i_{2}-1}^{(2)}\right|-\varepsilon\right)}{4 \pi \varepsilon^{2}}\right] \\
& \times\left[\prod_{i_{3}=1}^{N_{3}-1} \int d^{3} x_{i_{3}}^{(3)}\right]\left[\prod_{i_{3}=1}^{N_{3}} \frac{\delta\left(\left|x_{i_{3}}^{(3)}-x_{i_{3}}^{(3)}\right|-\varepsilon\right)}{4 \pi \varepsilon^{2}}\right] \\
& \exp \left\{-\sum_{i_{1}=1}^{N_{1}} B \mu-\sum_{i_{2}=1}^{N_{2}} B \mu-\sum_{i_{3}=1}^{N_{3}} B_{\mu}\right\} .
\end{aligned}
$$

Comments:
(a) 30 is the previously discussed grand partition function for a gas of non-interacting 't Hooft vortex loops. z_{p} is the partition function for three macromolecules which all begin at x_{0} and all end at x_{f} (Fig. Bb). The endpoints, x_{0} and x_{f}, are
arbitrarily located in three dimensional Eucidear spacc, hence the integrals, $\int \mathrm{d}^{3} \mathrm{x}_{0} \int \mathrm{~d}^{3} \mathrm{x}_{\mathrm{f}}$. There is also an arbitrary number of atoms, N_{1}, N_{2}, and N_{3}, for each macromolecule; $x_{s}^{(j)}$ is the position of the $s^{\text {th }}$ atom of the $j^{\text {th }}$ macromolecule. The chemical potential is $\mu=\frac{E^{2} \mathrm{~m}_{0}^{2}}{B}$, where B is the inverse temperature and ε is the length of a bond. The latter is the cutoff parameter in our segnented line approach to a continuous curve.
(b) The three macromolecules in Eq.(4.9) are 't Hooft vortices. Reintroducing $\ell\left(\psi^{\star} \psi\right)$, they undergo the same monomer or bond interactions as loops. Each carries $\frac{2 \pi}{g}$ units of flux from x_{0} to x_{f}.
(c) Because 30 multiplies Z_{p}, the second term, $30^{2} p$, is a system of an arbitrary number of closed loops and one triplet configuration. Let

$$
\begin{equation*}
\lambda_{p}=\frac{\lambda_{0}^{2}}{3!\varepsilon^{3}}\left(\frac{1}{6}\right)^{3} \equiv\left(\lambda_{R}^{m}\right)^{2} \tag{4.10}
\end{equation*}
$$

be a renormalized triplet activity (the subscript p stands for pair since there is a pair of vertices in Figs. 8a and 8b). Higher order terms in λ_{p} will generate multiple triplet configurations and will lea.! to $\exists_{0}\left(\sum^{\infty} \frac{1}{M!} \lambda_{p}^{M} z_{p}^{M}\right)$, a grand partition function for a system of closed ${ }^{\mathrm{M}=0}$ loops and triplets. The combinatorial factors
 grand partition function (vacuum bubbles exponentiate).

Let us redo the Wilson loop integral test, allowing for triplets and more complicated configurations. Both loopsand'triplets
lead to phase factors dependent on linking number. Figure 9
illustrates some possibilities.
Trouble arises in trying to repeat the calculation of Sec. III. Equation (3.4) is no longer val d . It works only for closed loops and not for those of Fig. 8. Fortunately, Eqs. (3.4) and (3.5) are not the only ones for linking number. Suppose B_{μ} is replaced by $B_{\mu}+\partial_{\mu} X$, where x is an arbitrary smooth function. Then, according to Eq. (3.5), $n=\sum_{i} \int_{C_{i}} B_{\mu}(x) d x^{\mu} \rightarrow$ $\sum_{i} \int_{C_{i}}\left(B_{\mu}+\partial_{\mu} x\right) d x^{\mu}=\sum_{i} \int_{C_{i}} B_{\mu}(x) d x^{\mu}$. The effect of $\partial_{\mu} x$ disappears because of Stokes theorem; there is a kind of 'gauge invariance" in defining B_{μ}. Does this arbitrariness affect the conclusions of Sec. Ill? The answer is no as seen from Eq. (3.8). A change in B_{μ} by $\partial_{\mu} x$ can be absorbed in the solution for ψ by multiplying $\psi(x)$ by $\exp \left\lceil i \frac{2 \pi q}{e} x(x)\right.$. This leads to the same action and the same $\ell n r$ behavior of the porential. The Lagrangian of Eq. (3.8) has a global $U(1)$ invariance which allows a redefinition of B_{μ} to be absorbed in a redefirition of ψ. Previously, the 't Hooft vortex Lagrangian (without the $\lambda_{o}\left(\psi^{3}+\psi^{*}\right)$ term) had this $U(1)$ invariance also. The charges $\frac{2}{3} \pi$ and $-\frac{2}{3} \pi$ were absolu+nly conserved. Such a system looked like ordinary charge. Only when ψ^{3} type terms are added can one "see" charge conserved modulo three. This is why the conclusions of the ' t Hooft model were similar to the Nielsen-Olesen case. Now that triplets are present we expect different conclusions.

We can use the "gauge inveriance" to define a B_{μ} which works. Let S be any two dimensional surface winich spans the wilson loop; the boundary of S is the Wilson loop. For simplicity take S to be a surface of minimal area. Let

$$
\begin{equation*}
B_{y}(x)=\int_{S} \delta^{3}(x-y) d S^{\mu}(y) \tag{4.11}
\end{equation*}
$$

Here dS^{μ} is the surface element directed normal to the surface (the sign of the normal is determined by the orientation of the Wilson loop). As a clarifying example, take the Wilson loop in Fig.9a:

$$
\begin{equation*}
B_{\mu}(x)=-\delta_{\mu} \delta^{\delta(z) \theta(x) \theta(L-x) \theta(y) \theta(L-y) .} \tag{4.12}
\end{equation*}
$$

If a curve, $x(\tau)$, pierces the surface then $\int d \tau \dot{x}_{\mu}(t) B^{\mu}(x(t))$ is plus or minus one depending on the piercing direction. Roughly speaking, $B_{\mu}(x)$ of Eq. (4.11)' points in the direction normal to the surface, acts like a delta function in this direction, and vanishes away from the surface. This $B_{\mu}(x)$ is obtainable from the old one by a gauge transformation. The old $B_{\mu}(x)$ [of Eq. (3.6)] is in the "Lorentz gauge", $\partial^{\mu_{B_{\mu}}}=0$. The new one is in a "surface axial gauge". Both B_{μ} 's have the same curl. The new B_{μ}, however, can handle triplets. This follows from the above discussion when one does perturbation theory in λ_{0} and returns to che macromolecule analog gas.

We proceed as in Sec. III. The result is

$$
\begin{aligned}
& \langle\operatorname{tr}\{P \exp (i g\} A \cdot d l)\}\rangle=
\end{aligned}
$$

Because of the singular nature of B_{μ}, the action in the numerator is infinite unless $\dot{\psi}$ vanishes on S. The solutions are as follows:
(a) When $\left.m_{0}^{2}\right\rangle 0$ and $\langle\psi\rangle=n, \psi=0$ is tre snlution and there is no c^nfinement due to 't Hooft vortices.
(b) When $m_{0}^{2}<0$ and $\langle\psi\rangle \neq 0$, the equations of motion must be solved with the constraint that ψ vanishes on S. This meass that \downarrow will have non vacum expectation vàues near S, the action will go like the area of S, and the potential will grow with r. Spontaneous symetry brealdown with triplets present gives linear confinement.

We now make some observations:
(i) The effect of choosing a general gauge for B_{μ} is as follows: Suppose the B_{μ} of Eq. (4.11) is replace by $\mathrm{B}_{\mu}+\partial_{\mu} \mathrm{X}$. When expanding Eq. (4.13), the macromolecules in a triplet, going from x_{0} to x_{r}, get mulleplied by $\exp \left[3 i x\left(x_{f}\right)-3 i x\left(x_{0}\right)\right]$. This transformation is innocuous only if $x\left(x_{o}\right)$ and $x\left(x_{f}\right)$ are multiples of $\frac{2 \pi}{3}$. Because there is a gas of triplets, whose position may te anywhere, general gauges
are not allowed. The arbitrariness in the triplet's location constrains $X(x)$. A gauge transformation causes triplets to be multiplied by umwanted phase factors and ruins the wilsc:t loop calculation. A singular surface gauge must be chosen.
(ii) What happens if a non minimal urface 25 chosen? Does the actior. $\mathfrak{j u}$ as the area of this surface? Consistency demands tha: the physics be independent of S. Suppose another non minimal surface, S^{\prime}, is chosen. The minimal surface, S, and the non minamal surface, S^{\prime}, form a closed surface (Fig. 10). Let V be t... enclosed volume. Redefine \geqslant by

$$
\begin{equation*}
\psi(x) \longrightarrow v(x) \exp \left[i \frac{2 \pi}{3} x_{v}(x)\right\} \tag{4.14}
\end{equation*}
$$

where $x_{y}(x)$ is the characteristic function for V, that is, $x_{1}(x)=1$ if x is in V and $x_{V}(x)=0$ is x is outside V. Plugging into Eq. (4.13) with B_{μ} given by Eq. (4.11) one sees that

$$
\begin{equation*}
\left(\partial_{\mu} \psi-i \frac{2 \pi}{3} B_{\mu} S^{\prime} \psi\right) \rightarrow\left(\partial_{\mu} \psi-i \frac{2 \pi}{3} B_{\mu} S_{\psi}\right) \tag{4.15}
\end{equation*}
$$

The surface may be moved around by doing a step function gauge transformation where steps occur in multiples of $\frac{2 \pi}{3}$. According to (i), such a gauge transformation is allowed. In Eq. (4.15) $B_{\mu}^{S '}$ is the B_{μ} of E.q. (4.11) for the surface, 5^{\prime}, and B_{μ}^{S} is the B_{μ} for the surface S. Thus, for a non minimal surface, the solution is the one for the minimal surface multiplied by a step function phase factor and leads to the same action. The Wilson
loop action again goes as the minimal spanning surface area.
(iii) The solution is periodic in $q=2 \pi n$: when a higher dimensional representation is used so that the effective charge is $4=2 \pi n$, "screening" occurs and the action no longer gocs like the area. The Lagrangian

$$
\begin{equation*}
\mathcal{L}^{\prime}=\left|\left(o_{\mu}-i q_{\psi}\right) \psi\right|^{2}+m^{2} \psi^{\star} \psi+\mid\left(\psi^{*} \psi, \psi^{3}, \psi^{\star^{3}}\right), \tag{4.16}
\end{equation*}
$$

for $q=2 \pi n$ has trivial solutions where the phase of ψ jumps by $2 \pi n$ across the surface, S. The singularity in taking the derivative of this phase cancels the singularity in H_{μ}. Since the phase of is is defined modulo 2π, there is no mismatch of phases in ψ when going around the line of a Wilson loop; there are no global difficulties with this soiution. For $q=2 \pi n \pm \frac{2 \pi}{3}$, a similar procedure yields solutions whose action is the same as $q= \pm \frac{2 \pi}{3}$. Quarks will be confined but gluons will be screened. Going back to the original macromolecule partition function, one sees trivially that the Wilson loop is 1 for $q=2 \pi n$. However, it is non-trival that classical solutions reproduce this phenomenon since saddle point is an approximation. This gives confidence to our methods.
(iv) The solution is virtually independent of $\mathcal{F}^{\mathcal{F}}\left(\psi^{\star} \psi, \psi^{3} \psi *^{3}\right)$ although a strong potential between vortices may cause them to form dipole-like objects and ruin confinement, an unlikely possibility we feel. Thus confinement is a general phenomenon (almost)
independent of the forces between vortices. However, m^{2} being less than (or equal to) zero must be the reason that $\langle\psi\rangle \neq 0$ because of our reliance on the analogy with a gas of loops. By m we meen the physical effective mass which includes the energy per whit length as well as entropy embedding effects. There are other way: in whith $\left.\mathrm{m}^{2}\right\rangle 0$ but $\langle\dot{\psi}\rangle \neq 0$ (sec the potential of Fig. 11 . These potentials result in a liquid-gas type phase transition discussed 11. Langer ${ }^{26}$ and Colemas, ${ }^{27}$. Bubbles of true vacuwn form rather than a dense spaghefti vacum. The phase transiton occurs via barrier prietration instead of vacum instability.
(v) The difference between having and not having triplets is the difference betwern having and not having a Goldstone phenomenon with a broken invariance. Without triplets the Lagrangian of Ey. (4.7) (with $\lambda_{0}=0$) has a global $u(1)$ symmetry, because, as we have noted, topological charge, unable to be created or destroyed, behaves like ordinary charge. Ordinary charge is assoclated with a U(1) invariance. When spontancous symmetry breakdown takes place, a coldstone boson occurs. We conjecture that this massless particle creates long-ranged forces which ruin confinement and lead to only a logarithmic potential, although we cannot explicitly demonstrate this. Constrast this to when triplets occur. Charges in threes are created and destroyed; the symmetry is Z, a discrete group. In this case, no Coldstone boson occurs to disrupt the linear confinement.

Proving traplets exast will be difficult. he know no obvious way to ure semaclassical methods to calculate \%o. It is also (Gi \because to riverlonk such configurations usmg burdaked's and Samacl's ifcial iseld theory formatation ${ }^{13,} 21$ because of the powers of in i.4. (4.9).
ivi) in conjecture that when 〈 $\psi\rangle \neq 0$ the symetry ably, Traje if (which is probably U(l)), is restered. Along the 1. ines the ithges felds are ineffective in breaking H, the
 facerns. At the wriex the sjmmetries associated with the sturytors commating with "parallel" Higgs fields are mit broken. . nikft: in, the vacum is filled with vortices, so that, virtually, ni crery square centimeter of space the symmetry is restored. ke conclude tiat topological symmetry breaking will restore at least a (i(1) sungroup of the original color group. Hence, in addition to the linear confinement there will be a logarithmic potential due to there gluons. This logarithmic potential will be analytic in g and calculable via perturbation theory, whereas the topologically gencrated linear potential is non-analytic in g.
(vii) What do our solutions look like in a Hamiltonian approach? In particular, how do our ideas relate to 't Hooft's and are there any differences?

Let us first reproduce his result that $\operatorname{tr} P\lceil\exp (i g f(f) \cdot d \Omega)]$ creates a region of vaculm 'vith $\langle\psi(x)\rangle=\psi_{0} \exp \left(\frac{2 \pi i}{3}\right)$ for x inside C (throughout our discussion ψ_{0} is the vacuum expectation value of ψ and C is a closed loop contained in a time slice of
three dinensional Luclidean space). In a Euclidean formulation this 1s seen as foilows: consider the propagator of two wilson loops

Wi.cre (' orcurs at a much later time than C (see Fig. 12). To (vaciaic $\mathrm{l}_{\mathrm{i}} .(4.17)$, resort to the "gas of loops" analogy used to ciacuiated a single W'ilson loop [Sec Eq. (3.8)]. Choose B_{μ} l μ_{i}. (4.11) to be a sum of two terms, one resulting from using the miniriii surface of C and one resulting from the minimal surface of (: m each of these two survaces ψ must vanish. For t large, the solution to the equations of motion is approximately the sum of the solutions of each Wilson loop. When the vacuum expectation Vislue of each is subtracted off as in Eq. (4.17), the contribution cancels. There are, however, other surfaces which span a pair of Wilson loops, which are not the union of two surfaces, one for C and one for C^{\prime} (see Fig. 12). They look like "hour glasses". They occur when $\psi(x)-\psi_{0} \exp \left(\frac{2 \pi i}{w^{\prime}}\right)$ inside the "hour glass", in winch case, the singularity in B_{μ} on C and C^{\prime} is cancelled and reappears on the "hour glass" surface. The contributions from these do not cancel in Eq. (4.17). The new ψ must vanish on this new surface so that the action goes like the hour glass's surface area.

Classically, the hour glass will try to be small-necked. This, of coursc, is the instability of a classical closed string. Quantum mechanscally, there is a sum over all surfaces, each weighted by its surface area (the Nambu action). Fquation (4.J7) will result in the propagator of two closed strings. These new solutions yield a ψ with the extra phase factor, exf $\left(\frac{2 \pi i}{3}\right)$, inside. This coincries with 't llooft's conclusion; the physical interpretation of thas process is that $\operatorname{tr}[P \exp (i g)(A / A \cdot d \nu\}$ produces a region of $\psi_{0} \exp \left(\frac{2 n i}{3}\right)$ vacinm whict propagates until $\operatorname{tr}\{1$ exp $1-i g(A / A \cdot d e l\}$ destroys it. The Willson loop operator does, indeed, produce regions of topological z_{3} vaculm.

Now let us deal with a quark-antiquark system or equivalently put a filson loop in the system. Choose a non-minimal rurface, S^{\prime}, as tine surface in the surface axial gauge. By looking at a time slice, we can relate our solutions to a Hamiltonian picture. Figure is shows, in this time slice, the curve C^{\prime}, which is the intersection of S^{\prime} with this slice, and the curve C, which is the intersection of the minimal surface, S, with this slice. C' and \mathcal{C} enclose a region, R. The classical solution has $\psi(x)=\psi_{0}$ far from $R, \psi(x)=\psi_{0} \exp \left(\frac{2 \pi i}{3}\right)$ well inside R, and $\psi(x)=0$ on C. In this sense we reproduce 't Hooft's conclusion; across the line, \mathcal{C}, ψ undergoes a continous phase change. Unlike 't Hooft, we have the extra constraint that $\psi=0$ on C. This constraint is extremely important.

There is a possible misconception conceming how one might calculate the force between quarks. The following, although it leads to a linear potential, is incorrect; it gives the wrong coefficient in front of r. As 't llooft noted, there are Bloch walls separating regions of topological z_{3} vacua (Fig. 14a). Their energy per wit length can be calculated by going to one lower dimension (1 + 1) and looking for static solutions, that is, solutions to the equations of motion which depend on x but not on y or t. They look like one dimensional solitons which go to ψ_{o} as $x \rightarrow-\infty$ and Ho to $\omega_{0} \exp \left(\frac{2 \pi}{3}\right)$ as $x \rightarrow \infty$ ($\mathrm{Fi}-4$ incorrect conciusion is that these selfsame solitons form strings between quarks so that the potential is $m_{s} r$ (m_{s} is the soliton's mass). As demonstrated the correct solution requires $\psi(x)$ to vanish between the quarks. It is most likely that the Bloch wall solitons do not satisfy this ${ }^{28 ;} \psi$ can undergo a phase change without going to zero.

What should be done is to find solutions, independent of y and t but x dependent, under the constraint that at $x=0, \psi=0$ (Fig. 14c). They will have an energy, m_{c}. The potential between quark and antiquark will be $m_{c} r$. This m_{c} differs from m_{s} since the equations are solved using different constraints and boundary conditions. Although this distinction may seem unimportant, it is crucial in extending our ideas to one higher dimension.

By using a spatially dependent chemical potential, it is seen that $\left\langle\psi^{*}(x) \psi(x)\right\rangle$ is proporti,nal to the density of monomers at x.

$$
?^{20}
$$

lopological spontancous symnctry breakdomn give < $\left.{ }^{*}(x),(x)\right\rangle$ a clansical vaiue indicating that the vacum is filled with z_{3} vortice:. The quark ant lquark solutions have $\langle\boldsymbol{*}(x) v(x)\rangle=6$ along a itrang between them. Hence, that region contams no wrtice. Ke would say that the confaning string ohtalns its energy not from. beary : \&doci wal! soliton but by expellang topological vortex Ushat. Ihe essental physical property in not that ondergoen a finase disnge but that it vanish on C.
be conclute that, technacally speaking, it is no: a Bluci, will suldton which ties the quarks together. The potential energy Bus, at the distance, because equations of motion are solved wain conntramis. As pointed out in the introduction, there are no. soliton-tye vortices to bind quarks in four dimensions; the Bloch wial swations are surfaces and cannot serve as confining stractures. The cructal point, however, is that Wilson loops will still induce
 't Houft $2+1$ dimmbiomal model to ome higher dmension will yade a similar iphe of continement.
(wiii) the confinement eriterion for har)ons ls different from mesons ${ }^{23}$. What replaces the Wilson loop is (see Fig. 15a)

Take C_{1} far from C_{2} and \mathcal{C}_{3}. If the action decreases exponentially with area then confinement in baryons occurs. figure 15ia resembles the "dual" of a iriplet. Similarly, an arbitrary' gisube for by is not possible. One, therefore, might think that even without triplets topological $;$ minein breakidom would confine ywiths in baryons. This is not inve, though: First choose a giaje whith is singular on threc surfaces such as in lig. 15t. A gatge transformation, $B_{j} \rightarrow B_{j}+\dot{a}_{j} \lambda$, can te periomed as bong as,$a j=\frac{2-}{3} n$ and $:(b)=\frac{2-n}{3}$ (a and r are the endposnts 111 Fis. 15). Henct, a gauge can be chosen for which B_{μ} is smouthed oit. If a and b are far apart, it can be made to look like the Lorent: gauge in the region far from both a and b. This will lead to only a logarithmic potential. Triplets are needed for baryon confinument also. Concerning the restrictive effect on gauge choice, the difference between baryons and triplets is that the latter form a gas. Endpoints of triplets can be located anywhere; given any space-tine point there is a configuration in the statistical ensemble with a triplet vertex there. This forces X to be a step function in units of $\frac{2 \pi}{3}$ everywhere. On the other hand a baryon constrains X at only two points, a and b.

In the presence of triplets and topological symmetry breakdown baryons will be confined. A gauge for B_{μ} singular on surfaces (Fig. 1Sb) must be chosen. One most solve the ψ equations of motion with $\psi=0$ constraints on surfaces to determine interquark forces.

Ascimang constatuent yuarki are fis apert and that the cacera. goes as the area of the smagular curface, we can see how a biat:

 when one of the threc strang has zero denfith. hixer dore (a) sicut and willen doen (b) occur? As an eximple of what happers, "An-tian the thard quisk to be equadustant from the other the

$$
\mathrm{H}(\mathrm{~d})=m_{c}\left(2 r^{2} L^{2}+d^{2}+j-d\right)
$$

The notation is as jn Fig. l6a and mic is a constant. The pront d is detenmined by sceting $\frac{\Delta l}{\partial d}=0$, for which we find that : ut $\mathrm{d}=\frac{1}{\sqrt{3}}$ the third quark sits in the middle case (b), whereas fou d. $\frac{1 .}{\text { in }}$ ince strings form case (a) ${ }^{\prime}$. This is reasonable phosically: as the third quark moves farther away, energetically it becomes favorable to pull new string out, rather than stretch two strings.

Because of the different baryon string picture, baryon Regge trajectories might behave differently from meson ones. It may be that at low energies the third quark sits in the middle. This would give similar Regge trajectories and slopes. At higher
emerics third quark excitations might form causing baryon trafectories to become dheferent irom meson ones.
leit us strimarlze the key points when topologlal symetry

i. A logarithric potertial is obiamed in the absence o: trabici mad a linear potental is obtaned is their preseme.
11. The potental is triality depeadent. Representation: nit: :seceral hyercharge are screened. Representations with
 !...:
: i. Sriganal color symetries are at least partially restored.
\checkmark MNOPOLES
in thas section, we shall show how monopoles arise in the t' l.unt F_{A} model. The important conclusion will t that, in the presence of triplets, the phase transition from $\langle\psi\rangle=0$ to $\therefore \neq i$ is a transition from an ensemble or monopole - antimononole pairs (magnctic dipoles) to a liberated plasma of monopoles and amt imonopoles. This phase transition might be compared to that of a two-dimensional Coulomb gas ${ }^{10,29}$ except that the interaction hetween monopoles gets changed from a linear one to a non-confining one, most likely a Yukawa, $\frac{l}{r} \exp (-\mu r)$, potential (the expected Coulomb-like $\frac{l}{r}$ potential probably gets screened due to plasma effects ${ }^{7,8}$).

Two points need clarifying: In $3+1$ dimensions for an abelain theroy, we know what a monopole is: We compute $\int_{S} \mathrm{~B} \cdot \mathrm{dA}$
over a closed surface, S. If $\frac{2 \pi}{e}$ results, there is a monopole of strength $\frac{2 \pi}{\mathrm{e}}$. First, what is a monopole in $2+1$ dimensions? Solitons in $3+1$ dimensions are instantons in $2+1$ dimensional Euclidean space. The monopoles in the 't Hooft model will be instantons (like Polyakov's, for example ${ }^{7}$). Secondly, what is a monopole in an $\operatorname{SU}(3)$ gauge theory? Without Higgs fields, we don't know how to precisely define one, but with Higgs fields we can. A classic example is the 't Hooft - Polyakov monopole ${ }^{30}$ in the Georgi - Glashow model. Recall that 't Hooft defined a gauge invariant $F_{\mu \nu}$ which, in the presence of the "hedgehog" solution, behaved as a monopole field. The Higgs fields were an essential ingredient in $F_{\mu \nu}$. Likewise, we can define an $F_{\mu \nu}$, but only when $H=U(1)^{31}(H$, described in Sec. IV, is the subgroup in which the flux points). When this happens, there is a vector, n [Eq. (4.5)], constructed out of Higgs fields which indicates the color direction of vortex flux. This vector transfoms in the adjoint representation under gauge transformations. Hence $\eta \cdot F_{\mu \nu}$ will be gauge invariant and can be used to measure the flux ${ }^{32}$. Normalize η so that $\Pi \cdot \pi=\frac{N}{2(N-T)}=\frac{3}{4}$ for $S U(3)$. Definition: There is a monopole of N Dir, units if

$$
\begin{equation*}
\int_{S} B \cdot d A=\frac{2 \pi N}{g} \tag{5.1}
\end{equation*}
$$

where S is a closed surface and $B^{i}=\frac{1}{2} \varepsilon^{i j k} \eta^{\ell} F_{j k}^{\ell}$.
With this definition triplet configurations are monopoleantimonopole instanton pairs. Perform the measurements, $\int_{S} \mathrm{~B} \cdot \mathrm{dA}$,
over a sphere enclosing one end of a triplet (Fig. 17a). Since each vortex acts like a delta function of flux, we will measure three contributions of flux of $\frac{2 \pi}{g}$ units. The total flux emanating from the endpoint is $\frac{6 \pi}{8}$. Triplets are monopole - antimonopole pairs. Each has three Dirac units. Ordiaary vortex loops are not monopoles because $\frac{2-}{8}$ units enters at one point but exits at another (Fig.170).

Without Higgs fields it is difficult to know what constitutes a monopole. It is important to know whether it can be defined in a pure Su(5) gauge theory. Aesthetically, one would like to io akay with the Higgs fields. They are only being used as a crutch. One might try the follwing. Take a sphere, S . Break it into sall regions, R_{i}. Each region, R_{i}, has a closed boundary, C_{i}. Wake measurements $\left\{t r P \exp \left(i g \int_{C_{i}} A \cdot d \ell\right)\right\}$. Define $\frac{1}{g}$ times the phase to be the "fluw". Add up all the fluxes to obtain the total flux. Several problems arise: first, θ units of flux is indistinguishable from $2 x n+\theta$ units. In treating triplets, one might conclude that the first two vortices contribute $\frac{2 \pi}{g}$ while the last contribtes $\frac{-4 \pi}{g}$ so that the total is zero. This procedure would give an incorrect result. Secondly, it is unclear what is being measured because there is no Stoke's theorem for non-abelian gauge theories ${ }^{33}$. We are not really measuring the fotal flux. Because non-abelian flux is not additive like abelian flux, this procedure will almost always y^{i} eld a non-zero result. Although gauge invariant, it is useless. Another attempt chooses a vector, $V^{\ell}(x)$, appropriately normalized. If

$$
\begin{equation*}
\frac{1}{2} \int_{S} v^{\ell} \varepsilon_{i j k} F_{i j} d S^{k} \neq 0 \tag{5.2}
\end{equation*}
$$

onc might say there is a monopole. For an arbitrary v^{ℓ}, this is not gauge invariant so that Eq. (5.2) is also meaningless. Fortunately the Z_{N} 't Hooft model has Higgs fields and we are able to circumvent these difficulties. We shall return to this point in Sec. VIII.

When $\langle\psi\rangle=0$ and $m^{2}>0$, the three string of a monopole carry energy per unit length (these strings are the analogs of superconductor vortices). This means that a monopole must always be paired very closely to its antimonopole partner. Detection of In mopoles is difficult unless the sphere, S, in Eq. (5.1) is miniscule. Dipoles will also have little effect on confinement as the calculat : ns of Sec. IV demonstrated. A dipole's three strings can link with a Wilson loop only when it is near the quark trajectory. This produces only a perimeter effect and a mass renormalization. Next consider what happens when $\mathrm{m}^{2}<0$ and topological spontaneous symmetry breakdown takes place. The chemical potential per atom (in the macromolecule analogy) is negnitive and vortices of large size are favored. One can see that the monopole antimonpole constituents in a dipole are liberated by considering a triplet with endpoints far apart. Focus on one of the monopoles. There are three flux strings emanat ${ }^{\prime}$ from it. Unlike the previous case, these strings do not head directly for the partner antimonopole. Instead they more in arbitrary directions.

The partition function (or the Feynnan path integral in a particle dynamics description)sums over all these directions. Consider measuring the flux, $\int_{A} B \cdot d S$, flowing through a small disk, A, of a sphere enclosing the monopole (see Fig. 17a). In doing this measurement only a fraction of the time will a string pierce A. This averaging effect spreads the flux. Symmetry demands we measure $\frac{6 \pi}{g} \frac{A}{4 \pi r^{2}}$, where A is the area of the disk and r is the radius of the sphere. In short, averaging over all vortex paths quantum mechanically spreads out the flux so that a "normal" monopole with a radial magnetic field is observed. Since the action of the gauge fields is $-\frac{1}{4} \int F_{\mu \nu}^{2} d^{3} x$, we expect ${ }^{34}$ that these monopoles will interact very much like ordinary ones, with Coulomb-like potentials. In a semiclassical approximation to the Lagrangian of Eq. (4.7), the monopole's activity is $\frac{1}{\sqrt{3!}} \lambda_{0}\langle\psi\rangle^{3}$. As it should, the monopole's density goes to zero when the vacuum expectation value of ψ goes to zero. This picture of confinement in the $2+1 Z_{N}$ model is similar to Palyakov's instanton one ${ }^{7}$.

$$
\text { VI FROM } 2+1 \text { TO } 3+1
$$

This section extends the ideas in $2+1$ dimensions to $3+1$ dimensions, relates the $2+1$ model to the $3+1$ one, and indicates that proof of confinement in $2+1$ is probabl, sufficient to prove confinement in $3+1$. This means that the $2+1$ \sum_{N} model is more than just a toy laboratory. It is important to calculate the vortex properties and find the effective lagrangian.

Once these are known, we will proiably know whether gauge theories in $3+1$ dimensions confine via the z_{N} mechenism. Just as instantons in $1+1$ dimensions are solitons in $2+1$, the z_{N} solitons in $2+1$ are strings in $3+1$. The vortex solution, which is x and y dependent in Euclidean
$1+1$, becomes t independent in $2+1$ and t and z independent in $3+1$. It respectively looks like a point, a line, and a sheet. The latter two manifest thenselves as loops and closed surtaces and their associated quanta are particles and closed strings. The ideas in Eunlidean $2+1$ are relevant for $3+1$ dinensicns because a time slıce of $3+1$ looks like Euclidean $2+1$. The solitons in $2+1$ which were particles tracing out trajectories now: hecome strings tracing out surfaces. Hence, in the physical world the topological objects are closed strings mandfesting themselves ..l Euclidean space as " Z . N surface solitons."

The key defining property is linking number. $\ln 2+1$ dimensions two non-intersecting loops can link and linking number is well-defined for oriented curves. In $3+1$ dimensions a closed surface and a loop can link. Again, for oriented surfaces and oriented ioops the linking number is well-defined. Figure 18 illustrates using "time lapse photography" how a sphere ${ }^{35}$ and a loop can link. Because of this, a Z_{N} topology characterizes "surface solitons". It works just like it does in one lower dimension. An idealized, that is infinitely thin, surface soliton, S, satisfies

$$
\begin{equation*}
\left[\operatorname{tr} P \exp \left(i g \oint_{C} A \cdot d \ell\right)\right]=3 \exp \left(\frac{2 \pi i}{3}\right), \tag{6,1}
\end{equation*}
$$

Whenever C links with S. Far from the surface where potentials are pure gauge, Eq. (6.1) is valid. Near the surface of a smeared or physical surface soliton, Eq. (6.1) is incorrect. We shall always use "idealized" solitons. Whenever a loop, C, links with S, there is a map from C into the gauge group (as discussed in Sec. IV). These maps are characterized by $\prod_{1}\left(\operatorname{SU}(3) / z_{3}\right)=z_{3}$. Eq. (0.1) says this map is a non-trivial element of Π_{1}. Similarly, the topology can be discussed in terms of Higgs fields. Far from the surface, the Higgs fields take on talues in the minimum, M, of the potential. Moving along C traces a closed curve in M. Again, these are characterized by $\Pi_{1}(M)=Z_{3}$. As long as C and S are kept away from each other, there is no way to unlink them. Likewise, as one moves C, the toplogical element $\Pi_{1}(M)$ or $\Pi_{1}\left(\operatorname{SU}(3) / z_{3}\right)$ cannot jump since such continuous movements are homotopies. The topology is virtually the same as in one lower dimension.

The topological surfaces will have properties similar to the 2+1 dimensional case:
(i) On the surface the Higgs fields become "aligned" so that at least one generator commutes with them. We expect only one generator, $\eta^{\ell} \ell_{2}^{\ell}$.
(ii) For "idealized" surfaces, there is a delta function contribution to the flux in the n direction. Let $e^{(1)}(x)$ and $e^{(2)}(x)$ be twe orthonormal tangent vectors to the surface at x. Then

$$
\begin{equation*}
\eta^{\ell}(x) e_{\alpha}^{(1)}(x) e_{B}^{(2)}(x) \frac{1}{2} F_{\mu \nu}^{\ell}(x) \varepsilon_{\alpha B \mu \nu}=\frac{2 \pi}{g} \delta_{1}^{2}(x) \tag{6.2}
\end{equation*}
$$

The vector, η^{l}, is nomalized so that $\sum_{l}^{\eta_{n}^{l}}=\frac{3}{4}$ and $\delta_{1}^{2}(x)$ is a delta function in the variables perpendicular to the surface. More accurately,

$$
F_{\mu \nu}^{\ell}(x)=\frac{2 \pi}{\xi} \oint_{\begin{array}{c}
\text { over } \tag{6.3}\\
\text { surface } \\
\text { soliton }
\end{array}} \frac{4}{3} \eta^{\ell}(y) \delta^{4}(x-y) \frac{1}{2} \varepsilon_{\alpha \beta \mu \nu} d S_{\alpha \beta} .
$$

(iii) The nass of the soliton in $2+1$ is (roughly) the energy per unit length of the string. The engineering dimensions of the parameters that give the mass in $2+1$ have dimensions of mass squared in $3+1$; couplings acquire different dimensions in different dimensions. For example, the mass of the Nielsen-Olesen vortex due to the Higgs potential goes like $\langle\phi\rangle^{2}$. ${ }^{5}$ In $2+1$, $\langle\phi\rangle^{2}$ has dimensions of mass, whereas in $3+1$, it has dimensions of mass squared.

Linking number formulas in four dimensions also exist. Reference 17 gives

$$
n=\frac{1}{2 \pi^{2}} \int_{x E S} \int_{\mu \nu} \int_{y \in C} \int_{\beta} \frac{1}{2} E_{\alpha \beta \mu \nu} \frac{(y-x)_{\alpha}}{|y-x|^{4}}
$$

$=\oint_{S}^{1} \frac{1}{2}{ }_{\mu \nu V}(x) d S_{\mu \nu}(x)$,
where

$$
\begin{equation*}
B_{\mu \nu}(x)=\frac{1}{2 \pi^{2}} \quad \oint_{C} \varepsilon_{\alpha \beta \mu \nu} \frac{(y-x)_{\alpha}}{|y-x|^{4}} d y_{B} . \tag{6.5}
\end{equation*}
$$

In Eq.(6.4) S is a closed oriented surface, $d S_{j v}$ is the surface element, C is a closed oriented curve, d_{B} is its line element, and $\frac{1}{2 \pi^{2}}$ is the volume of the three dimensional unit sphere. In the second form, the curve, C, is parametrized by s so that $y(s)$ is the location at "time", $s, y(0)=y(1)$, and $\frac{d y}{d} \frac{b}{s}$ is the "velocity". The variahles σ and τ parametrize the surface in the same manner as in dual string theory. They take on values in the unit square, and $x(\sigma, \tau)$ is the location of the surface at that (σ, τ) value. Because the surface is closed, $x(0, \lambda)=x(1, \lambda)=x(\lambda, 0)$ $=x(\lambda, 1)=$ a constant for $0 \leq \lambda \leq 1$, that is, the boundary of the square is mapped to the same point. The linking number is an integer.

If one were doing static electromagnetism in $4+1$ dimensions, the $B_{\mu \nu}(x)$ of Eq. (6.5) would be the magnetic field at x produced by a unit current flowing through C. It has a "vector field" gauge invariance:

$$
\begin{equation*}
B_{\mu v}(x)+B_{\mu v}(x)+a_{\mu} x_{v}(x)-a_{v} x_{\mu}(x) . \tag{6.6}
\end{equation*}
$$

Under the tranforration of Eq. (6.6), Eq. (6.4) is unchanged. This means that there are many other permissible forns for $B_{\mu v}$. There is also a guage invariance for the gauge since $x_{\mu}+x_{\mu}+\partial_{\mu} x$ leaves Eq. (6.6) invariant.

The vacum will be agas of Z_{N} closed surfaces. This will be an interesting statistical mechanics ensemble. Such a gas might yield a field theory for strings for which the methods of sections II, III, and IV could be mimicked. Even in the absence of interactions between points on the surface, where a free field theory of closed strings is expected, constructing such a field theory. will be difficult ${ }^{36}$. Ve are, thercfore, unable to calculate the Wilsion loop. Such a calculation involues suming over the gas of surfaces, weighting each surfacp, S, by the factor

$$
\begin{equation*}
\exp \left[\frac{2 \pi i}{3} \int_{S} \frac{1}{2} B_{\mu v}(y) d S_{\mu v}(y)\right] \tag{6.7}
\end{equation*}
$$

with $B_{\mu \nu}$ given by Eq. (6.5) for C being the Wilsom loop. Instead, we make the following observations and conjectures: Assume that the soliton in 2+1 dimensions has a positive mass so that in $3+1$ the surfaces carry a positive surface energy. The topological sector generates a theory of strings. Such closed strings do not carry quantum mumbers. They occur as space-time events: a point sudden appears, sketches into a ringlet, and shrinks away. These ringlets are restricted to be small and to last for brief
durations because of the large surface action generated. An exception to this might be the tachyons in the dual string model. These two low lying states, as minute closed strings, resemble particles of negative mass squared. They trace out long trajectories which because there is no conserved quantum number can begin or end in the vacuum. As long thin cyiinders, they have little effect on Wilso. loops except for possibly a mass renormalization; such thin tubular configurations are unlikely to link. All in all, such a system does not produce confinement.

Eecause of the 2_{3} structure of the topology there may exist other types of surfaces. These are the analogs of the $2+1$ triplets. Figure 19 shows a "triplet surface" imbedded in the slice, $z=0$. The temporal evolution of this configuration is shown in Fig. 20. Time slices sometimes yield triplets and sometimes ringlets. These string configurations are verydifferent from interacting dual strings. The latter interact by breaking or by joining ends as well a., a "four point" interaction where two strings touch in the middle and exchange string halves.

These interactions occur at a specific location at a particular time. Figure 20 shows that triplet surfaces look like an open string circumscribed ty a closed one or more accurately three open strings joined at the ends; the three are in constant interaction. Thus, this string theory is unlike anything previously considered in dual models.

Triplet surfaces contain, of course, monopoles. The intersection of the three surfaces is a curve which is to be identified with the monopole's trajectory. Like closed soliton surfaces, triplet surfaces must also be assigned an orientation. This
induces an orientation on the boundary, that is, for the monopole loop ${ }^{37}$. Hence, as should be the case, the monopole trajectories are oriented and closed, indicating a conserved quantum number (monopole charge). Since three surfaces span the monopele loop, the system at a particular time looks like a monopole-antimonopole pair joined by three vortices (Fig. 8). Because these three vortices carry a positive erergy per unit length, the monopoleantimonopole pair are inexorably bound by a linear potential. Triplet surfaces, comprised of the monopole loop and three spanning surfaces, must be small anc hence monopole vacuum loops are race cvents. These "neutral" objects have few physical effects. is in orie lower dimension, there is no confinement. The interesting casc of topological symmetry breakdown, where confinement is expected, will be discussed shortly. We first must show how linking numict can be defined for triplet surfaces.

Equation (6.4) no longer works for triplet surfaces. This is the higher dimensional analog of the problem discussed in Sec.IN. The resolution is similar: a singular "surface axial gauge" for $B_{L \nu}$ must be used. Let S_{C} be any surface which spans the kilson loop, C. Then

$$
\begin{equation*}
{ }_{\mu \nu}^{B_{\nu}^{S} C^{\prime}(x)}=\int_{S_{C}} \frac{1}{2} \varepsilon_{\mu \nu \alpha \beta} \delta^{4}(x-y) d S_{\alpha \beta}(y), \tag{6.8}
\end{equation*}
$$

works. This $B_{\mu \nu} \mathrm{S}_{\mathrm{C}}$, when substituted into Eq. (6.7) and integrated over the triplet surface, S, yields the correct phase factor. The surfaces S_{C} and S should not be confused; the former is any
surface whose boundary is the kilson loop while the latter is the triplet surface. It is not hard to find a gauge transformation which moves S_{C} : Let S_{C}^{1} and S_{C}^{2} be twin Wilson loop spanning surfaces. They fonm a closed surface. Let V be any volume, i.c., a three-dimensionas manifold, whose bcundary is therr urion. For $y=1$, let $r_{H}(y)$ be the vector orthonormai to v at y in four space. Then

$$
\begin{aligned}
x_{i}(x) & =\int_{y \Sigma V} \eta_{j u}(y) \delta^{4}(x-y) d^{3} y \\
& =\int_{y \in V^{\prime}} \frac{1}{3!} \varepsilon_{u \alpha E_{i}} \delta^{4}(x-y) d^{. \alpha E \gamma}(y), \quad(0.9,
\end{aligned}
$$

when used in Equation (6.6) affects a gauge transformation from

 solumes. K, whose boundury is $S_{C}^{1} t S_{\mathrm{C}}^{2}$; refiects the fact that tiac gauge transformation is not unique ("a gauge invarime for the gauge", as previously discussed.

What would happen if a general gauge was chosen in Eq. (0.7)?
Take the $B_{\mu \nu}$ of $E q .(6.8)$ and perform the gauge transformition $B_{\mu \nu} \rightarrow B_{\mu \nu}+\partial_{i j} X_{\nu}-\hat{a}_{v} X_{i}$. Then, each of the three surfaces comprising; a triplet surface would contribute an extra factor

$$
\begin{align*}
& \int_{S}\left(\partial_{\mu} x_{\nu}-\partial_{v} x_{\mu}\right) S_{\mu \nu} \\
= & \oint_{\partial S} x_{\mu} d x^{\mu}=\oint_{C_{M}} x_{\mu} d x^{\mu} . \tag{6.10}
\end{align*}
$$

The boundary of each surface is C_{M}, the monopole loop. Triplet surfaces would get multiplied by the tuwanted phases

$$
\begin{equation*}
\operatorname{erp}\left(z_{i} \oint_{C_{M}} x_{\mu} d x^{\mu}\right) \tag{6.11}
\end{equation*}
$$

This is innocuous if $\oint_{C_{M}} x_{\mu} d x^{\mu}=\frac{2 \pi}{3} n$. For a gas of triplet surfaces, we must require that

$$
\begin{equation*}
\oint_{C} x_{H} d x^{\mu}=\frac{2 \pi}{3} n, \tag{6.12}
\end{equation*}
$$

for all loops, C. Ey shrinking C to a point in a plare, P, Eo. (6.12) implies that $\partial_{\nu} x_{\nu}-\partial_{\nu} x_{\mu}$ must be singular on the plane, P^{\perp}, perpendicular to P. Hence gauge transformations can only move S^{C} around and Eq. ($(.8)$ is the most general fom for $B_{\mu \nu}$; one cannot smooth $B_{\mu \nu}$ out.

The interesting case is when topological symmetry breakdown occurs, that is, when the vo-tices in $2+1$ dimensions have a "gative (or perhaps zero) mass squared. Then, topological surfaces are expected to have a negative surface action density and will populate the four-dimensional world. This implies that the closed topological strings kill have a negative Regge slope, a thought that, at first,
seems preposterous because of the infinite number of tal lyons. However, the situction is not as bad as i.t appears and even ras a simple physical interpretation. First of all, a total collapse is not expected. The sane repulsive vortex forces which stabilize the proliferation ef closed loops in $2+1$ dimensions will be present in $3+1$ dimensions and will stabilize the vacuum ${ }^{38}$. Secondly, triplet surfaces will become moncpeles with their magnetic flux spread out. Consider, for example, a large monopole loop with its three topological Z_{3} surfaces. Unlike the case, $m^{2}>c$, where the surfaces are the ones of minimal surface area, the surfaces can be anywhere. The quantum mechanical sum over all possibilities will make the flux evenly distributed rather than being focused in tubes. We corijecture that a negative slope parameter fcr these types of strings results in "ficlds". By this, we mean a string theory gets transformed into a field theory. There is another example of this rhenomenon which siould clarıfy what we mean, namely Wilson's lattice gauge theory ${ }^{39}$. Keep the lattice specing finite. In the strong coupling limit the electic field is focused into tubes. States of two quarks connected by an electric flux tube,or a torus of flux,are permissible. The theory hes strings with positive slope parameters. As the coupling constant is lowered, the electic flux begins to spread out more and more until a phase transition occurs where it spreads out uniformly in the usual Coulomb-like manner. At the phase transition, spontaneous symmetry breakdom of electric strings has occurred. The effective surface action density (including entropy contributions) has become zero. We conjecture that the phase transition
from $\langle\psi\rangle=0$ to $\langle\psi\rangle \neq 0$ is the same phenomenon except with "dual" magnetic fields (see Table 1). This is whet we mean by strinls of negative Regge slope being metamorphosed into fields. When this happens topological surfaces beconc. magnetic fluctuations and monopoles brund in dipoles become liberated. These monuples will now be instnmental in confiring quarks. $\underline{I f} \mathrm{~m}^{2} \leq 0$ for 't Hooft vortices and triplets exist in $2+1$ dimersiens, then in $3+1$ dimensions monopoles, previously confined in monopole-antimonopole pairs by magnet ic flux tubes, get libe rated resulting in a monopole plasma.

Ne conjectire that the phenomene exhibited in $2+1$ dimensions will be present in $3+1$. Already discussed are magnetic fluctuations due to close surface sclitons and monoples die to surface triplets. Also guaranteed is that the non-perturbative potential will be "periodic in cnarge" because of Eqs. (6.4) and (6.7). This screening plenomenor means that integral hypercharge multiplets will not be confined. Any approxination scheme to a Wilson loop calculation should be able to reproduce this phenomenon. Next, we expect that topological symmetry breakdown will restore the symmetry associated with H. The reason is the same as in one lower dimension: the Z_{N} surfaces will fill up the vacuum until overlap repulsive farces take over. Since h is restored on these surfaces, H will be restored virtually everywhere. Finally, several arguments show why confinement in $3+1$ dimensiors will occur:
(i) The vacuum is a gas of monopoles. Roughly speaking, such a system confints because of a "dual Meissner effect" ${ }^{8,40}$.

Just as a gas of current loops confines moropoles in a s'गerconducter, a gas of magnetic current loops confines cherges.
(ii) Although there is ncw no interpolating scliton as there wa: in $?+1$ dimersions, confinerent is still erpected. Physically, surface solitons are expelled from a region (the surface, S_{C}) between the quarks. This c"eates a tube of "abnormal vacuum" which. carrics energy. A linear potential results.
(iij) The wilscn loop calculation involves a system with an "rea constraint (the "surface axial gauge" constraint of Eq. 6.8). If a non-trivial situation exists, the action must go as the: area. (iv) A time slice of $3+1$ looks iike $2+1$ tuclidean space. Confinenent in $2+1$ might indicate confinement in $3+1$. Putting a cuark locp in a time slice appears to recuce the calculation to one lower dimension. Let us defing the term, dimensional reduction, as when a Wilson loop in stich a time slice of $3+1$ cin te calculated in $2+1$ as a static situation. Dimensional reduction does not always occur. Consider, for example, the lower dimensional analog: a cormarison of the $J+1$ instanton gas of Nielser-Oleseri vortices to the Njelsen-Olesen model in $2+1$ with vortey topological symmetry breakdown. The fonmer looks apfroximately like a time slice of the latter. Howerer, Sec. III obtained a logarithmic potential for the $2+1$ model, whereas a linear potential occurs in $1+1$ dimensions. The reascal for this is clear. When the wilson loop is placed in a time slice, the P_{μ} of Eq. (3.6) is non-zero for all times. The Wilson loop affects the vortex gas throughout the $2+1$ wimensionel world and not just at onf time.

Dimensional reduction does not happen. If, however, B_{μ} were zero outside the time slice it would happen. This is the case for the 't Hooft hoodel with triplets. The P_{μ} of Ec. (4.12) has jts support in the time slice containing the Wilson loop. This is why linear confinement occurs: The calculation dimensionally reduces to the $1+1$ instanton calculation, which is known tc confine. Returnirg to the physicai world with triplet surfaces absent, tre $B_{\mu \nu}$ of Ec. (6.5) is ron-zero for all times. For this situation, the calculation does rot cimensiorally reduce. If $\mathrm{B}_{\mu \nu}$ were forced to be in a geuge witt the suppert cf $\mathrm{B}_{\mu \nu}$ in a time elice, then tcpological symmetry treekdown would yield the logarithmic potential obtained in $2+1$. But this is not the case. Our guess is that the action will go like $\int \mathrm{F}_{\mu \nu}^{2} \mathrm{~d}^{4} x$ so that closed surfaces yield only a J / r petertial. When there are triplet surfaces the situation is completely different; $\mathrm{B}_{\mu \nu}$ is forced to be in a "surface axial gauge" such as E.. (6.8), tre calculation dimens ionally reduces, and a linearly confining potential (the same cne as in Sec. IV) is obtained. With triplet surfaces fresent, a cime slice of the recl wcrld does indeed look like the $2+1 \quad Z_{N}$ model witt triplets and confinement. Vil relation to Mandelstam's satem

There is a similarity between Mandelstam's confinement scheme ${ }^{8}$ and tcpologi.cal symnetry breakiown with triplet surfaces. We sk.all touch upon thif comon points and differences. Hare is a quick review of his quark confinemer.t:
(a) The Coulomb gauge contains a term $E_{L}^{\alpha} \cdot E_{L}^{\alpha}$ in the Hamiltonian where

$$
\begin{equation*}
E_{L}^{\alpha}=\nabla\left[\nabla^{2} \delta^{\alpha \gamma}-g f^{\alpha \beta \gamma} A_{i}^{\beta} \nabla_{i}\right]^{-1} \rho^{\gamma} \tag{7.1}
\end{equation*}
$$

Thr inverse operator, $\left[\nabla^{2} \delta^{\alpha \gamma}-g f^{C \beta \gamma} A_{i}^{\beta} \nabla_{i}\right]^{-1}$, akin to $|a x-b|^{-1}$ in a one-dimensional quantum system, will produce infinities unless the vacuum is suitable chosen.
(b) In the $A_{z}=0$ axial gatge, this problem becomes equivalent to whether local (x, y) dependent (but 2 -indererdent) gauge transformations annihilate the vacuom. The bare vacuum fails tc do this and makes a poor starting point to perturt around.
(c) A vactum comprised of manoroles hés the right properties: the Lirac tubes (in $A_{z}=0$ gauge, the Dirac strings become tubes for finite-sized smeared-out monopoles) produce random gauge rotaticns. Such a state will be a singlet uncer local (x, y) dependent gauge transformations. It is a cendidate for the vacumm state.
(d) Such a monopole gas confincs in not so different a wa) from the Polyakor model ${ }^{7}$.

In shcri, Mandelstam's gas results in (i) a restoration of $\operatorname{sti}(\because)$ geuge symetry and (ii) quirk confinemert.

Likevise, we have shown similar results when topological symmetry breakdown occurs in the presence of triplets: a monopole vacumbin gererated and at least a globci $U(1)$ color symmetry is restored. We have been uncble to prove the restcration of the complete SU(3) gauge inveriance. Like Mandelstam's vacuum, corfinement is a consequence. The ideas or Sections IV, V, and VI neatly jell with Mandelstam's.

We rave given supfort to Mandelstam's nork in showing how:
monopoles naturally arise in an SU(3) gauge theory. The type of monopoles Mandelstam has been using (Wu-Yang ones ${ }^{41}$) are probably different from those in an SU(2) gauge theory. For SU(3) our monopoles carry $\frac{6 n}{g}$ units of flux. We have also elucidated on the dynamics of the system; in particular, how negative Regge slopes transform magnetic flux tubes into magnetic fields. We have not shown why topological symnetry breakdown takes place. If Mandelstam is correct then he has giver us the reason: such a breakdown occurs because of the $|a x-b|^{-1}$ problem. It is a matter of symmetry, monopoles, and disorder. In essence, the difference between no confinement and confinement is the difference between an ordered system with a broken symmetry anci a disordered system with monoples acting as the symmetry restoring agent.

VIII OPEN QUESTIONS

A. How does the phase diayram look for a ' t Hooft $\operatorname{SU}(N)$ gauge theory? In particular, how man,' phases are there? In Figure 4, we have drawn three phases, corresponding to (a) a normal boson potential, (b) a Higgs boson potential, and (c) a Higgs soliton potential. 't Hooft conjectured that phases (a) and (c) are the same. He argues that the soliton's mass squared must be proportional to the Higgs mass squared, the proportionality sign being negative since when the Higgs bosons are tachyonic the solitons have a positive mass. Analyticity implies that the solitons are tachyons
when the bosons have a positive mass squared. We feel this argument needs further justification since phese transitions induce nen-analyticities. This remains an oper question. In general, it is important to determine the phase diagram se that the confinerent phēse (if it eyists) and the coupling constant values which yield this phase can be found ${ }^{42}$.
B. Can a string field theory be constructed to describe the statistical erserble of topological surfaces? As previously discussed, witl such a construction the calculations of Sections II, III, ane IV could be performer? in $3+1$ dimes:sions..
C. What effects do instantors have? Callan, Dasher. and Gross have shown thet instentens crecte a paramagnetic laculm which tends to exprl ejectric fields ${ }^{2}$. This will surely affect the dynamics of topological surfaccs. Instantons might aid in (or even cause) the topelogical symretay bjeaking. Rcughly speaking, the surfaces should couple to instantons because monopoles and associated magnetic fields are long-ranged. They can contriblte to

$$
\begin{equation*}
\int \Gamma_{\mu \nu} \tilde{F}^{\mu \nu} d^{4} x \tag{8.1}
\end{equation*}
$$

in contrast to sloort-ranged field corfigurations which cenncit due tc the fact that Eq. (8.1) cen be written as a strface integral.
D. Are Higgs bosons necessary? As indicated in

Stctions III and IV, tofological vortices can be cheracterized solely in terms cf gauge potertials b; using path ordered preducts. This suggests that, fertaps, they exist indefendently cf the Higgs fields. We feel this may be the case for an Sti(N) gauge theory but certainly not for a $U(1)$ theory. The Higes busons in the $2+2$ dinensional NielsenOleser model serve two important purposes:
(i) they smooth out the short distance singularitics which would otherwise occur.
(ii) they ensure that \exp (ie $\int_{x}^{y} A \cdot d \ell$) returns 101 wher y loops around the vorter and returns to x.

Purpose (i) is not as jmportant as purpose (ii) for the existence of vortices. Purpese (i) is a short distance fheromenon which might be cured quantum mechanically or through rerormalization.

In the arsence of Higgs fields, tlere are still finjte erergy vortex configurations (obtained by using the classical values of $A_{\mu}(x)$ when the Higgs fields were present) although they art not entrgy minima. In cortrast ptirpose (ii) is essential. With figgs bosons, the Higgs fields must take on values in tre minima of the potential and be covariantly constant far from the vortex. This mearis that $\exp \left(i \in \int_{\mathrm{X}}^{\mathrm{y}} \cdot \mathrm{d}\right.$) is precisely
the rotation (in this casc, phase) which transforms the classical Higgs field at x to its value at y. As one goes around the loop and returns te x, this guarantees trat $i \int-A \cdot d \ell=\frac{2 \pi n}{e}$. This mear: \quad that magnetic flux gets quantized. Kithout figgs fields, configtirations stich es $A_{\phi}(x)=a(\rho) / \rho$, with $a(\rho)=0$ at the vortex and $a(\rho)=\frac{c}{e}$ far away, have finite energy. Here, c is an axtitrary constant. This means thet flux is nct quantized and $\int A \cdot d \ell=\frac{2 \pi c}{6}$ is arbjtrary. The solitcns lose their icertity as tuhes cf conscrved quantized flux. Instakility occurs because tubes of $\frac{2 \pi}{e}$ urits can dissolve intc mary smaller tubcs say I tuhes $\mathrm{cf} \frac{2 \mathrm{~m}}{\mathrm{e}}$ tnits. Thus furpose (ii) is the essertial stabilizing effect cf liges bosons in the Nielsen-olesen $U(1)$ modiel.

In the ron-abclian cese, purpose (i) still
functions but it is pessible that property (ii), which is row modified to

$$
\begin{equation*}
\left[P \exp \left(i g \oint_{C} / A \cdot d \ell\right)\right]_{\alpha \beta}= \tag{8.2}
\end{equation*}
$$

[a center of the group ϵ lement $]_{G B}$,
for locips, C, which ericircle the vortex, holds even in the absence of Higgs fields. This is because YangMills ther ries are self-interacting. These selfinteractions pcssibly act as a reflacement for the Higgs
boscn - gauge field interactions. If a flux tubc, at some instance, peints in the 2 direction, thus cortribuing to $r_{1}^{\ell}{ }_{P}{ }_{z}^{\ell}$, two of the threc gange potentials might act like the two Higgs fields while the third is the flux gererating gauge potential. This foint needs furthcr clarification, but Yang-Mills theories offer the aethetically fleasing fossibility of eliminating Higgs ficlds withrut ruining any of the fhysjcal resuits ¿iscussed in this raper.

If the Higgs fields art eliminated, the froticr. of defining a moncpole returns. Previously, the vector, $r_{1}{ }^{\hat{2}}$, constructed out of Higgs fields, was used. We now must mandfacture ar: n^{ℓ} using gauge potentials. There are mary ways of co:ng this: at each point, x, attact a closed loop, C_{x}. Definc

$$
\begin{equation*}
\left[\exp \left(r_{1}^{\ell}(x) \frac{\lambda^{\ell}}{2}\right)\right]_{\alpha P}=\left[P \exp \left(\oint_{C_{x}} / A \cdot d A\right]_{\alpha \beta} .\right. \tag{8,3}
\end{equation*}
$$

In Eq.(8.3) the path erdering staris at x, proceeds along C_{x}, and finds at x. Beginning at any otler startifg point is nct possible. The vecter, $n^{\ell}(x)$, transforns in the octet represcntation under gauge transformations. Using the magnetic fjeld, $B_{i}(x)=\frac{1}{2} \varepsilon_{i j k^{r}}{ }^{\ell}(x) F_{j k}^{\ell}(x)$, onc cari 'test' for moropoles by integrating $\int \mathrm{B} \cdot \mathrm{dS}$ giver closed surfaces. Of course, this method gencrater.
an infinite number of magnetic fields, all of which are gauge invariant. Only a prudent choice of the C_{x} will yield a $B_{i}(x)$ with the desired properties, that is, that this magnetic field be the one contained in vortex flux tubes and be the one associated with the monopoles contained in triplet surfaces.
E. Is there a non-abelian duil group? Implicit in our discussion is the dualities between magnetic fields and electric fields, monopoles and charges, etc. Table 1 illustrates some of these. When there are Higgs bosons and a unique η^{ℓ}, i.e. $H=U ' 1$), the symmetry group of the surfaces (and monopoles) is either $U(1)$ or z_{3} depending on whether triplets exist. If the Higgs fields can be eliminated will there be a non-abelian dual group? This question will be hard to answer because of the quantum mechanical effects inherently associated with an internal symmetry group, namely, color zitterbewegung ${ }^{23}$. This goes beyond our discussions which have been classical in character.
IX SLAMARY

To prove confinement the following must be shown:
(a) that the 't Hooft Z_{N} solitons in $2+1$ dimensions have a phase with $m^{2}<0$ and that there are repulsive forces which stabilize the vacum.
(b) that $\lambda_{0}\left(\psi^{3}+\psi^{*^{3}}\right)$ (or similar) terms exist, that is; triplet are present.
(c) that a time slice of the four dimensional world is described by the physics of the $2+1$ dimensional model.

When the above are satisfied, ke expect
(i) confinement
(ii) restoration of some or all of the original color symmetries.

Without (b) tonological symmetry breakdown gives only a $\ln \mathrm{r}$ potential in $2+1$ and (most likely) a $\frac{1}{r}$ potential in $3+1$. Showing(a) and (b) is the next calculational step. These problens can be approached by using:
(i) Semi-classical methods ${ }^{43}$. These can determine how the soliton's mass depends on the parameters in the Higgs potential.
(ii) A field theory for solitons ${ }^{13,21}$. This should be useful in determining the forces between vortices and whether the vacuum stabilizes for $m^{2}<0$.
(iii) Mandelstam's operator methods ${ }^{8}$. These should be applied to Z_{N} type monopoles. These methods might be useful in determining vacuum instabilities and hence why the soliton's mass is negative.
(iv) Halpern's dual field strength formiation ${ }^{44}$. This approach might exhibit the topological solitons and their properties directly. It might also be helpful in determining whether vacum instabilities exist.

Most difficult will be showing (b), that triplet configurations exist, although there is no a priori reason (in the sense of a conseryation law) why they shouldn't.

Additional problems particular to four dimensions are:
(a) Whether the closed soliton strings have negative Regge slopes and whether this makes sense as this paper suggests.
(b) Whether triplet surfaces occur. A new type of dual string model is needed.
(c) whether the liiggs potential can be dune away with. Are there singula but stable topological solitons in pure Yang-Mills theories?
(d) If (c) holds, there are no mass scales. How does dimensional transmutation ${ }^{45}$ come about? We wish to emphasize the following points:
(a) The non tbelian (and to a lesser extent non-perturbative) nature of the confinement. The sulfsame method can at most yield a ℓn potential for a $U(1)$ theory. This is because monopoles, i.e. triplets, cannot occur in an abelian theory and they are essentiai in the linear confinement.
(b) The potential between quarks is expected to have (i) a linear piece due to triplet surfaces, (ii) most likely a $1 / r$ non-perturbative large r piece due to closed surfaces, and (iii.) a (possibly screened or antiscreened) perturbative piece which dominates the short distance physics.

Let us conclude by sumarizing what we have shown:
(i) In $2+1$ dimensims we have exhibited how to do calculations when topological symmetry breakdown occurs by using a macromolecule analogy. lie believ: this will form the prototype of future topological symnetry breakdown calculations.
(ii) We have -xtended 't Hooft's confinement scheme in $2+1$ to $3+1$. Previously, only an operator algebra yielding dil.erent phases was obtained.
(iii) We have discussed the dymamics of quark confinement, namely, how monopoles naturally arise in a non-abelian gauge theory; how negative Regge slopes make sense, change ${ }^{2} \mathrm{~N}$ strings into magnetic field fluctuations, generate the usual $1 / \mathrm{r}$ radial monopole magnetic field, and liberate the monopoles (of the bound monopoleantimonopole pairs) which are so instromental to quark confinement.
(iv) We have corrected the physics of che z_{N} models to Mandelstam's confinement scheme.

In short, we believe we are at the verge of proving confinenent in non-abelian gauge theories.

REFERENCES

1. G.'t Hooft, Nuc1. Phys. B138, 1 (1978).
2. C. G. Callan, R. F. Dashen, and D. J. Gross, A Theory of Hadronic Structure, Princeton Preprint (Juce, 1978).
3. E. Witten, Instantons, The Quark Model, and the $1 / X$ Expansion, Harvard Preprint HUTP-78 (Oct., 1978).
4. T. Yoneya, Nuc1. Phys. B144, 195 (1978).
A. Casher, Self Dual $Z(N)$ Gauge Theories, DESY Preprint (1978).
5. 6. B. Nielsen and P. Olesen, Nucl. Phys. B61, 45 (19:3).
o. T. Banks, R. Myerson, and J. Kogut, Nucl. Phys. B129, 493 (1972).
-. A. M. Polyakur, Nucl. Phys. B121, 429 (1977).
1. S. Mandelstam, Confinement in Non-Abelian Gauge Theories, talk given at the Kashagton Mecting of the American Physical Socicty, (.lpril, 1977).
2. M. Stone and P. R. Thomas have used such an analogy in Phys. Rev. Letts. 41, 351 (1973). We prefer to rederive their result in a lattice independent way.
3. S. Samucl, Phys. Rev. D18, 1916 (1978).
4. Tho reviews are K. F. Freed, Adv. Chem. Phys. 22, 1 (1972) and F. W. Wiegel, Phys. Reports 16c, 59 (1975). References to earlier work can be found in these two.
5. M. B. Halpern and P. Senjanovic, Phys. Rev. D15, 1655 (1977).
M. B. Halpern and W. Siegel, ibid. D16, 2486 (1977).
M. B. Halpern, A. Jevicki, and P. Senjanovic, ibid. D16, 2476 (0977).
6. K. Bardakci and S. Samuel, Phys. Rev. .218, 2849 (1978).
7. R. J. Rubin, J. Chem. Phys. 20, 1940 (1952); J. Math Phys. 8, 576 (1967). S. F. Edwards, Proc. Phys. Soc. 85, 613 (1965); 88, 265 (1966). C. Domb, Adv. Chem. Phys. 15, 229 (1969).
8. A. A. Belavin, A. M. Polyakov, A. S. Schwartz, and Yu. S. Tyupkin, Phys. Lett. 59B, 85 (1975).
9. This review of vortex topological properties is similar to that of P. Goddard and D. I. Olive who elucidate the topological properties of monopoles in New Developments in the Theory of Magnetic Monopoles, CERN preprint TI. 2445 (1978).
10. H. Flanders, Differential Forms (Academic, New York, 1963). See p. 74.
11. E. M. Purcell, Electricity and Magnetism (McGraw-Hill, New York. 1965). See chapter 6 section 1.
12. L. I. Schiff, Quantum Mechanics, third edition (McGraw-H1ll, Nev York, .968). Sec. 27, p. 196.
13. C. W. Misner, K. S. Thorne, J. A. Wheeler, Gravitation, (1. H. Freeman, 1973). See p. 1149.
14. K. Bardakci, Field Theory for Solitons, II, Berkeley Preprint (Dec. 1978).
15. We thank Joe Polchinski for this point. Two Higgs fields suffice for all $\operatorname{SJ}(N), N \geq 2$.
16. S. Samuel, Color Zitterbewegung, to be published in Nuclear Physics.
17. Of interest in this context is P. Goddard, J. Nuyts, and D. Olive, Nucl. Phys. B125, 1, (1977).
18. Many other terms can be added which also generate triplets. They are non-local interaction terms. They are permitted, of course, since there is no reason to expect the effective soliton Lagrangian to be a local field theory.
19. J. 3. Langer, Annals of Physics 41, 108 (1967); Annals of Physics 54, 258 (1969); Proc. IUPAP Conf. on Statistical Mechanics, Amster jam (1973). For a review sec Wiegel, reference 1 L
20. S. Coleran, Phys. kev. D15, 2929 (1977).
21. For $\operatorname{SU}(2)$ the Bloch wall solitons do satisfy $\dot{\psi}(x)=0$ on C, because, ψ is a real fieid. ψ must vanish because the boundary conditions are $\psi(x) \rightarrow \psi_{0}$ for $x \rightarrow-\infty$ and $\psi(x) \rightarrow-\psi_{0}$ for $x \geq+\infty$. In this respect $S U(2)$ is a singular case.
22. J. M. Kosterlitz and D. J. Thouless, J. Phys. C6, 1181 (1973).
23. A. M. Polyakov, JETP Lett. 20, 194 (1974). G. 't Hooft, Nucl. Phys. B79, 276 (1974). For a review see reference 16.
24. For groups, H, larger than $U(1)$, it becomes just as problematic to define a monopole as in a non-abelian gauge theory without Higgs fields.
25. The analog of $\eta \cdot F_{\mu \nu}$ for the model of reference 30 is $\hat{\phi} \cdot F_{\mu \nu}$. This is not the 't Hooft $F_{\mu \nu}$ but it works equally well as noted by S. Coleman in Classical Lumps and Their Quantum Decendents,

Proceedings of the 1975 International School of Physics 'Ettore Majorana" and emphasized in reference 16.
33. See, however, N. H. Christ, Phys. Rev. Lett. 3i, 355, and reference 16.
34. This is true in an "abelized" gauge where the n vector's color direction is fixed, that is, spatially constant.
35. Besides spheres there will be tori and other of sented closed surfaces. The most general oriented surface is topologically equivalent to a sphere with n handles (an object of genus, n). These are allowed; the other two dimensional surfaces, the nonorientable ones such as the projective plane, are not allowed because linking number cannot be defined.
30. M. Kaku and K. Kikkawa have constructed a field theory for strings. Unfortunately, it is non-covariant and hence not useful from our point of view. See Phys. Rev. D10, 11:0 (1974).
37. The definition of orientation for a manifold can be found in M. Spivak, Calculus on Manifolds (Benjamin, New York, 1965) page 119. The way in which an oriented manifold induces an orientation for its boundary is on this same page.
38. K. Bardakci has explicitly shown this in a string model, private communication.
39. K. G. Wilson, Phys. Rev. D10, 2445 (1974).
40. S. Mandelstam, Phys. Reports 23C, 245 (1976); G. 't Hooft, in High Energy Physics: Proceedings of the E. P. S. International Conference, Palermo, June 1975, ed. A. Zichichi, p. 1225.
41. T. T. Wu and C. N. Yang, in Properties of Matter Under Unusual Conditions, ed. H. Mark and S. Fernach (Interscience, New York, 1969), p. 349.
42. Of interest in this connection is T. Banks and E. Rabinovici, Finite Temperature Abelian Lattice Gauge Theories, IAS Preprint (Jan. 1979).

4j. J. Goldstone and R. Jackiw, Phys. Rev. D11, 1485 (1975). R. Dashen, B. Hasslacher, and A. Neveu, Phys. Rev. D10, 4115 (1974); 10, 4130 (1974); 10, 4138 74); 1, 3424 (1975). For review's see R. Jackiw, Reviews of Mod. Fhys. 49, 681 (1977) and R. Rajaraman, Phys. Rep. 21C, 227 (1975).
44. M. B. Halpert, Field-Strength and Dual Variable Formulations of Gauge Theory, LBL Preprint-7980 (Sept. 1979 ${ }^{\text {i }}$.
i5. S. Coleman and E. Weinberg, Phys. Rev. D7, 1888 (1973). C. Thorn has presented a pedagogical example of dimensional transmutation in the two-dimensional quantum mechanics problem with a potential, $g \delta^{2}(x)$. Talk given at Lawrence Berkeley Laboratory. See also C. Thorn, Quark Confinement in The Infinite Momentum Frame, MIT preprint (Sept. 1978).
$\left[\begin{array}{c}\text { Wilsc: Lattice Gauge Theory } \\ \text { Electric Fields } \\ \text { Quarks } \\ \text { Closed Electric String } \leftrightarrow \text { Electric Fluctuations } \\ \text { Positive Slope } \quad \leftrightarrow \text { Zero or Negative Slope }\end{array}\right.$

Table 1

Figure 1. The Macromolecule Approximation. (a) A continuous curve between x_{o} and x_{f}, (b) the macromolecule approxination of (a), (c) a closed curve, and (d) its macromolecule approximation.
Figure 2. A Vortex. This is a cross section of the vortex in the 1.2 plane. The $3^{\text {rd }}$ axis is out of the paper.

Figure 3. Linking Numbers. (a) The Wilson loop. Its width and length are r and t. Figures (b), (c), and (d) show a vortex linking with this Wilson loop with linking numbers $+1,-1$, and +2 respe tively.

Figure 4. The I'hases of the $2+1$ Dimensional Nielsen-Olesen Model. (a) The symmetric phase. (b) The Higgs phase (c) The Topological Symetry broken phase.

Figure 5. A Non-trivial Path. Here is a solid sphere with antipodal points identified. This solid is topologically equivalent to $O(3)$. A closed path is said to be trivial if, via continuous deforrations, it can be shrunk to a point. The path shown here begins at A, makes its way through the sphere, and ends at A^{\prime}. The path is closed since A^{\prime} is
the same poin: as A. Because when A is moved A^{\prime} must move so as to be opposite A, it is impossible to bring A to A^{\prime} so as to shrink the path to a point. This path is non-trivial.

Figure 6. The Product of Two Non-Trivial Paths Equals a Trivial One. Multiolying two paths, P_{1} and P_{2}, which begin and end at the same point is defined to be the path, $P_{3}=P_{2} \cdot P_{1}$, formed by first traversing P_{1} and then traversing P_{2}. (a) Here is a path which begins at A, goes to A ' via P, where it "reappears" at A. It then goes to A^{\prime} via Q, hence back to the starting point, A. This path is the product of two 'Figure 5" naths. (b) we deform the curve a bit. The new path again starts at A, but instead goes to a point, B, nearby A'. It "reappers'" at B^{\prime}, whence it goes to A^{\prime} via Q . This closes the path since A^{\prime} is identified with A. (c) Move the point B (and hence the point, B^{\prime}) around the sphere until it comes to A. (d) Shrink the two loops to the points A and A^{\prime}. Since we have continuously deformed this path to a point, it is trivial.

Figure 7. Non-Trivial Higgs Configurations. Figures (a) and (b) show the behavior of two non-trivial Higgs configurations far from the vortex. They carry the topological z_{2} charge. Figure (c) shows what happens near the vortex: the Higgs fields become almost parallel but still rotate when going around the vortex. At the center they become exactly parallel.

Figure 8. Triplets. Figur: (a) is the simplest triplet and Fig. (b) is its macromolecule approximation. Figure (c) is a more complicated structure.

Figure 9. Linking Number of a Triplet Nith a Wilson Loop. . : a) The Wilson loop. It has dimensions $\mathrm{L} \times \mathrm{L}$ and sits in the $x-y$ plane. The z-axis comes out of the paper. The nearby triplet does not link with the Wilson loop so $\mathrm{n}=0$. (b) A linking configuration yielding the phase factor $\exp \left(\frac{2 \pi i}{3}\right)$ and (c) a linking configuration yielding the phase factor $\exp \left(\frac{-2 \pi i}{3}\right)$.

Figure 10. Spanning Surfaces. The dark line is the Wilson loop. The non minimal surface, S ', is the "cup-1ike" surface below the soop. The minimal surface, S, forms a'lid'. Together they enclosed the volume, V.

Figure 11. A "Bad" Topological Symetry Breaking Fotential.
Figure 12. The Propagator of Two Wilson Loops, C and C^{\prime}. There are two types of spanning surfaces giving contributions; the ones where each Wilson loop annihilates into the vacuum and the "hour-glass" ones.

Figure 13. A Time Slice of a Wilson Loop. At an instant in time, the лоп minisal gauge surface, S^{\prime}, and the minimal surface, S, will look like the curves C^{\prime} and C. The classical solution has the phase factor ex $\left(\frac{2 \pi i}{3}\right)$ inside the region, R, enclosed by C and C^{\prime}.

Figure 14. Bloch Wall Solitons. (a) A region of $\exp \left(\frac{2 \pi i}{3}\right)$ vacurm surrounded by normal vacuum. The physical ground state will contain such domains of z_{3} vacua. The objects separating them are Bloch walls. Their excitations are associated with closed strings. (b) The mass per unit length of the Bloch wall is calculated by considering a straight one at $x=0$. Then the problem is similar to finding a one-dimensional soliton. (c)

The correct constraint for calculating the confining potential between quarks.

Figure 15. Quark Trajectories in a Baryon. (a) A baryon consisting of three quarks is produced at a and destroyed at b. In between the three quarks travel along paths, C_{1}, C_{2}, and C_{3}. (b) A singular gauge surface. It consists of three disks, each of which is bounded by a quark trajectory and the line from a to b.

Figure 16. The Shape of Baryons. (a) Quarks at the ends of Three strings. A time slice of Fig. 15b would yield this configuration. (b) A quark in the middle of a string. (c) A triangular quark and string configuration. The numbers 1, 2, and 3 label the quarks. The dark lines are the strings.

Figure 17. Monopoles. (a) A sphere of radius, r, surround. ing the endpoint (monopole) of a triplet. The total magnetic flux emanating is $\frac{6 \pi}{g}$. The region, A, is a disk on the sphere. (b) For a vortex the total flux emanating is zero.

Figure 18. Linking of a Sphere and a Loop in Four Dimensions. These three figures show a temporal sequence in which a sphere and a loop link. Each $\mathrm{t}=\mathrm{n}$ value represents a time slice. In general, a time slice of a loop and a sphere yields respectively two points and a loop. Exceptions to this occur when the loop or sphere are contained within a single time slice, in which case they respectively look like a loop (Fig. (c) at $t=3$) and a sphere (Fig. (b) at $t=3$). Figure (a) shows the generic case: a pair of "particles" and a small "closed string" are produced out of the vacuum. One of the particies shoots through the loop, which subsequently shrinks and disappears. The particles then anninilate. In Fig. (b) the sphere is contained in the $t=3$ slice. Again, a pair of particles is produced and the two separate. One of them is instantaneously surrounded by the sphere, which subsequently vanishes. The two then annihilate. In Fig. (c) the loop is contained in the $t=3$ slice. A closed string is produced. It expands; then with the sudden appearance of the loop, it links. The loop instantly disappears and the closed string shrinks and vanishes.

Figure 19. A Triplet Surface. This surface is contained in the $z=0$ slice of space-time, hence the z direction is not shown. The object is like a smaller bubble stuck to a bigger one.

Figure 20. The Temporal Sequence of Fig. 19.

(c)

(d)

XBL 791-215
Figure 1

Figure ?

Figure 3

$\langle\Phi\rangle=0$
Mossless photion
U(1) chorge bymmatry
log. pol. bot wien charget
(0)
$\langle\phi\rangle \neq 0,\langle\psi\rangle=0$
Massive photon
(1) ehorge symmetry

- brohen

U(I) topologicol symmetry
Short ranged Yukowa type force bafween charges
(b)

Top.
symmetry brantuown

$\langle\Phi\rangle=0,\langle\psi\rangle \neq 0$
Massless photon
U(I) chorge symmery restored
U(I) Iopolagical charge broken
Non-perturbative in ir polentlal between chorges
(c)

XBL 791-210

Figure 4

Figure 5

Figure 6

Figure 7

(c)
$X B L 791-222$

Figure 8

ecz-162 78x

ع22-16L 7日x
$(\varepsilon /!\Perp 2-) d x$
(c)

$\exp (4 \pi i / 3)=\exp$

$$
1
$$

$\exp (2 \pi \mathrm{i} / 3)$
(b)
Figure 9

Figure 10

XBL 791-225

Figure 11

2

Figure 13

Fipure 14

XBL 791-233

Figure 15

xBL 791.2R9

Figure 10

0
$t=1$
Figure 18

Figure 19

$$
0 \cong
$$

$$
0 \text { I }
$$

$$
\begin{aligned}
& 0 \text { 플 } \\
& 0 \stackrel{\circ}{1} \\
& \text { 791-234 } \\
& \text { XBL } \\
& 6: \\
& 0 \stackrel{+}{-} \\
& \text { Figure } 20 \\
& 0:
\end{aligned}
$$

